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Solar farms have PV arrays in arid and semi-arid regions where ensuring the system’s reliability is paramount and 
face uncertain events like dust storms. The deposition of random dust patterns over panel arrays is called uneven 
soiling, which diminishes the power generation of such farms. This paper finds the most suitable hybrid algorithm 
model, the wavelet transform-based support vector regression variants (WT-SVR) algorithm, and the empirical 
model decomposition-based support vector regression variants (EMD-SVR) to predict the extent of soiling levels 
and uncertain events on PV arrays. The soiling dataset is taken from NREL’s Soiling Station Number 3 in Imperial 
County, Calipatria, California, from December 30, 2014, to December 31, 2015. This research tested four SVR 
variants on soiling data, viz., 𝜀SVR, LSSVR, TSVR, and 𝜀TSVR, then compared with the benchmark random 
forest. The hyperparameters for each model are meticulously tuned to enhance the robustness of the trained 
algorithms. Results reveal that the WT-TSVR model outperforms the WT-SVR model in terms of wavelet transform 
decomposition by a margin of 91.6%. Similarly, the EMD-TSVR model showcases an 85.7% enhancement in 
performance over the EMD-SVR model based on empirical mode decomposition. All SVR variants outperform 
the benchmark model (RF). Furthermore, EMD models exhibit enhanced efficiency in forecasting random events 
compared to WT, which is attributed to their reduced computational time. This model applies to multi-cleaning 
agent robots, aligning with recommendations from the state-of-the-art literature.
1. Introduction

Photovoltaic (PV) power is emerging as a crucial renewable energy 
source within the interconnected power grid network. Efficient eco-

nomic dispatch of a PV power plant necessitates the anticipation of 
power efficiency, a metric influenced by solar irradiation and various 
factors like the geographical location of the plant, tilt angle, incident 
angle, dust accumulation, wind speed, and surface temperature of PV 
panels, among others [1]. Notably, the dust accumulation, or the soil-

ing rate, is particularly high in arid regions like Gulf countries (e.g., 
Qatar, Saudi Arabia, Kuwait), significantly impacting power genera-

tion. In these regions, soiling is an inevitable challenge that diminishes 
the transmittance of solar rays from the glazing of solar panels to the 
cells. This reduction occurs due to the accumulation of diverse local 
particles on the panel’s surface. The nature and extent of soiling vary 
across different locations, and non-uniform (uneven) soiling occurs due 
to spatial irregularities, random events in arid regions, dust storms, and 
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other factors [2]. The impact of soiling losses on electrical efficiency is 
noteworthy, especially in large-scale solar farms [3]. As an illustration, 
the efficiency declined from 7.2% to 5.6% over a 108-day observation 
period in a commercial site in Santa Clara, California [4]. Similarly, 
Dhahran, Saudi Arabia experienced a power loss ranging from 45.9% to 
49% over eight months [5], the Colorado desert exhibited a 2.6% loss in 
six months [6], and instances of power losses surpassing 50% in various 
studies [7–11].

Due to gravity, lightweight dust particles uniformly settle on the 
panel’s surface in typical wind conditions, as noted in the study by 
Majeed et al. (2020). However, the dispersion of larger particles is in-

fluenced by factors like wind speed and storms, resulting in an irregular 
or non-uniform distribution of dust on the glazing of the photovoltaic 
(PV) panel. [12]. Research indicates that the impact of non-uniform 
soiling on photovoltaic energy generation is more significant in propor-

tion to the effect of uniform soiling [13]. Wind erosion is the primary 
factor behind desertification, uncertainty, and temporal changes in arid 
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Abbreviations

PV Photo-Voltaic

DSI Dust Storm Index

GRA Granger-Ramanathan averaging

DT Decision Tree

LR Linear Regression

RF Random Forest

ANN Artificial neural network

ARMA Auto-regressive moving average

ARIMA Auto-regressive moving integrated moving average

MAE Mean squared error

RMSE Root mean square error

SVR Support vector regression

SSR/SST Ratio of sum of squared residuals to sum of squared devi-

ation

SSR Sum of squared residuals

SST Sum of squared deviation of testing samples
regions. Consequently, accurately forecasting wind erosion events and 
the Dust Storm Index (DSI) is crucial for effectively managing panel soil-

ing. Ballestrín et al. emphasized the significance of achieving accurate 
solar power forecasting results, essential for the seamless integration of 
solar energy into the smart grid [14]. Researchers have discovered var-

ious cleaning methods for solar panels, such as air blowing [15], spiral 
brush cleaning [16], microfiber cloth cleaning [17], electrostatic clean-

ing [18], and dew cleaning [19]. These cleaning agents typically involve 
a robotic structure moving across the entire solar panel row. How-

ever, these rigid cleaning practices result in unnecessary cleaning of 
already clean portions, increasing cleaning energy and time consumed. 
Therefore, there is a motivation to implement a machine learning-based 
prediction algorithm that considers forecasted random events. This ap-

proach optimizes the cleaning process, making it quicker and more 
energy-efficient for robotic structures.

Many researchers developed prediction models for optimization of 
power, dust storm index, energy, etc. Gostein et al. observed that 
nonuniform soiling detected by the soiling ratio using maximum power 
metric is insufficient to differentiate random events [20]. Ebrahimi et al. 
found that combining the Granger-Ramanathan averaging (GRA) model 
with individual machine learning models provides a more accurate dust 
event forecast in arid areas [21]. Zhang et al. discussed a deep learning 
technique for probabilistic estimation of soiling loss [22]. Benhmed et 
al. developed a power prediction model using feature selection meth-

ods. The decision tree (DT) model is more accurate than the linear 
regression (LR) with and without feature selection but more accurate 
with all features [1]. However, the short-term solar energy prediction 
model developed by Shahid et al. and the obtained random forest (RF) 
and ridge regression model outperformed [23]. Khandakar et al. took 
environmental parameters of the site in Qatar, like solar irradiance, 
wind speed, relative humidity, ambient temperature, panel surface tem-

perature, and accumulated dust for feature selection, and compared 
among artificial neural network (ANN), linear regression model (LR), 
M5P decision tree (DT), and Gaussian Process Regression (GPR) for out-

put power prediction, in terms of RSME [24]. A summary of forecasting 
models for the soiling and targeted parameters is recorded in Table 1.

Dhiman et al. successfully devised hybrid machine intelligent mod-

els, specifically support vector regressor (SVR) variants like TSVR and 
𝜀-TSVR, incorporating wavelet transform (WT) decomposition. This ap-

proach was applied for short-term wind speed forecasting and identifi-

cation of ramp events in wind farms [25]. Given that soiling on solar 
panels depends on weather-related stochasticity, like rainfall or dust 
storms that rapidly alter soiling levels akin to ramp events in wind 
farms, the current work addresses the uncertainties of random events 
like distributed dust or soiling patterns. The study seeks to detect these 
patterns and quantify the amount of dust present utilizing SVR machine 
learning algorithms. Consequently, SVR variants, with WT and empir-

ical mode decomposition (EMD) methods, are applied to analyze the 
soiling dataset. Also, the forecasting models of Random Forest (RF) and 
Ridge consistently yield the lowest Mean Absolute Error (MAE) [23]. 
Consequently, the RF model is the benchmark for comparison in this 
2

research study.
Table 1

Forecasting models to predict soiling related parameters in terms of 
MAE.

Paper Forecasting model Target Out-performer

[1] LR (9.433), M5P-DT PV Power M5P-DT (8.632)

[21] MARS (1.17), SVR (1.08) Dust storm GRA (0.84)

Lasso (1.16), Cubist (1.02) index

K-NN (1.13), ANN (1.18)

GP (1.12), XGB (1.04)

RF (0.96), GRA (0.84)

[23] LR(67e5), DT (39e5) Energy Ridge (22e5)

Ridge (22e5), RF (22e5) RF(22e5)

Lasso (40e5), ANN (37e5)

[24] ANN (2.1436), M5P DT (7.69) PV Power ANN (2.1436)

LR (8.95), and GPR (6.69)

This research aims to develop an optimal hybrid prediction model 
for a dataset related to soiling. The study evaluates four Support Vector 
Regression (SVR) variants, namely 𝜀-SVR, LSSVR, TSVR, and 𝜀TSVR, us-

ing two signal decomposition techniques—wavelet transform (WT) and 
empirical mode decomposition (EMD). The comparison is conducted 
within SVR variants, with wavelet transform (WT-SVR variants), and 
with empirical mode decomposition (EMD-SVR variants). The hybrid 
prediction model, incorporating these techniques, is then tested on soil-

ing data. The performance of the WT-𝜀TSVR hybrid model compared 
with 𝜀SVR, LSSVR, TSVR, and 𝜀TSVR, first optimally tunes the regular-

ization and 𝜀 tube width tuning parameters to achieve the best model 
performance while retaining the regularization value for subsequent 
models. Subsequently, the model utilizes long-term historical data to 
predict uncertain events, such as dust storms over solar farms. These 
solar farms have fully automatic solar panel cleaning robots with appro-

priate cleaning agents for addressing these unpredictable events. This 
manuscript significantly contributes by employing machine learning 
and signal preprocessing for soiling quantification. This quantification 
serves as input for an algorithm that predicts soiling events, enabling 
the automatic cleaning robot at the solar PV farm site to initiate clean-

ing actions energy-efficiently and selectively clean heavily soiled sec-

tions of solar panels instead of the entire photovoltaic (PV) plant.

The organization of our work is given as follows. Section 2 presents 
the support vector regressor variants model formulation, and Section 3

describes the hybrid models framework process. Then, Section 4 de-

scribes the state of the art of soiling categorization. Section 5 is followed 
by the results and discussions. Section 6 concludes the work with a rec-

ommendation.

2. Support vector regression and its variants

Regression is one of the applications of Support Vector Machines 
(SVMs), and SVR is the extension of Support Vector Classification (SVC) 
[26]. The principle of structural risk minimization develops support 
vector regression (SVR) (SRM) using statistical learning for identify-

ing non-linearity in the data and provides a best prediction algorithm 

[27–29]. The objective of SVR is to fit a line (linear or nonlinear) over 
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Fig. 1. Regression line and its hyperparameters.
the data in n-dimensional space, called a regressor. These are decision 
boundaries that predict the output. The closest data points on either 
side of the hyperplane created two support vectors. The support vectors 
influence the regressor that helps to build the model [30].

2.1. 𝜀SVR

Consider a training set 𝑇 = {(𝑥1, 𝑦1), ...., (𝑥𝑖, 𝑦𝑖)}, 𝑖 = 1, 2, ..., 𝑙. 𝑦𝑖∈ℝ
is target vector, 𝑥𝑖∈ℝ𝑛 for 𝑛 feature vectors, 𝑙 is number of training 
instances. The basic SVR, as understood with Fig. 1, aims to find a re-

gressor function for prediction data as 𝑓 (𝑥) = 𝑤𝑇 𝑥 + 𝑏, with 𝑤 ∈ 𝑋, 
𝑏 ∈ ℝ, where 𝑤 is the weight coefficient for each input vector 𝑥𝑖 and 𝑏
is the deviation value (bias term) [31].

The weight parameter is such that (𝑤𝑇𝑥𝑖) shrinks towards the target 
vector 𝑦𝑖. The regressor 𝑓 (𝑥) is as flat as possible with maximum devi-

ation 𝜀. For model flatness, minimization of the square of the norm of 
weight vector 𝑤 is achievable through a convex optimization problem 
[32]:

𝑚𝑖𝑛

(
1
2
||𝑤||2 +𝐶 𝑛∑

𝑖=1

(
𝜁𝑖 + 𝜁∗𝑖

))
(1)

subject to

𝑦𝑖 −𝑤𝑇 𝑥𝑖 ≤ 𝜀+ 𝜁∗𝑖 , 𝑤𝑇 𝑥𝑖 − 𝑦𝑖 ≤ 𝜀+ 𝜁𝑖, 𝜁𝑖, 𝜁∗𝑖 ≥ 0, 𝑖 = 1,… , 𝑛,

where 𝐶 is a tuneable regularization parameter providing more weight 
to minimize the flatness or the error, with slack variables 𝜁𝑖 and 𝜁∗

𝑖

which give a soft margin to determine tolerable points outside the 𝜀
tube. However, kernel functions are also required in the case of non-

linear features to transform the data to a higher dimensional space via 
suitable mapping function 𝜙: ℝ →𝑍 .

The inner product ⟨𝑤𝑇 , 𝜙(𝑥)⟩ in the target space is represented using 
the kernel function that satisfies Mercer’s theorem such that 𝑘(𝑥𝑖, 𝑥𝑗 ) = ⟨𝜙(𝑥𝑖), 𝜙(𝑥𝑗 )⟩ are the elements of the kernel matrix 𝑘 [33]. This SVR 
optimization problem can be solved by finding Lagrangian multipliers 
or dual variables 𝜆, 𝜆∗, 𝛼, 𝛼∗ which are non-negative real numbers:

𝑚𝑖𝑛

(
1
2
||𝑤||2 +𝐶 𝑛∑

𝑖,𝑗=1
(𝛼𝑖 − 𝛼∗𝑖 )

𝑇 𝑘(𝑥𝑖, 𝑥𝑗 )(𝛼𝑗 − 𝛼∗𝑗 )

+𝜀
𝑛∑
𝑖=1

(𝛼 + 𝛼∗) −
𝑛∑
𝑖=1
𝑦𝑖(𝛼 − 𝛼∗)

)
, (2)

subject to
𝑛∑

∗ ∗
3

𝑖=1
(𝛼𝑖 − 𝛼𝑖 ) = 0, 0 ≤ 𝛼, 𝛼 ≤ 𝐶.
The performance of the regressor 𝑓 (𝑥) =
∑𝑛

𝑖=1(𝛼𝑖 − 𝛼
∗
𝑖
)𝑘(𝑥, 𝑥𝑖) + 𝑏, de-

pends on kernel function, regularization parameter (𝐶) and tube mar-

gin 𝜀.

2.2. LSSVR

In the Least square support vector regression (LSSVR), the square 
of the error term 𝜀 is minimized. The regressor function is 𝑓 (𝑥) = 
𝑤𝑇𝜙(𝑥) + 𝑏, with 𝑥𝑖 ∈ℝ𝑛, 𝑦 ∈ ℝ. The objective function is given as

𝑚𝑖𝑛

(
1
2
||𝑤||2 + 1

2
𝛾

𝑛∑
𝑖=1
𝜀2
𝑖

)
, (3)

subject to

𝑦𝑖 = 𝜙(𝑥𝑖) + 𝑏+ 𝜀𝑖, 𝑖 = 1,… , 𝑛,

where 𝛾 is the margin parameter and 𝜀𝑖 is the error term corresponding 
to each 𝑥𝑖. For optimization, equality constraints are chosen. It takes 
less computational time than classical 𝜀SVR.

2.3. TSVR

The twin support vector regressor (TSVR) with two non-parallel hy-

perplane functions 𝑓1(𝑥) = 𝑤𝑇1 𝑥1 + 𝑏1 and 𝑓2(𝑥) = 𝑤𝑇2 𝑥2 + 𝑏2 aims to 
find the 𝜀-insensitive down-bound and up-bound regressor respectively 
[34], as shown in Fig. 2.

The objective functions are

𝑚𝑖𝑛

(
1
2

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑒𝜀1 − (𝑥𝑖𝑤1 + 𝑒𝑏1))𝑇 (𝑦𝑖 − 𝑒𝜀1 − (𝑥𝑖𝑤1 + 𝑒𝑏1)) +𝐶1𝑒
𝑇

𝑛∑
𝑖=1
𝜁𝑖

)

𝑚𝑖𝑛

(
1
2

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑒𝜀2 − (𝑥𝑖𝑤1 + 𝑒𝑏2))𝑇 (𝑦𝑖 − 𝑒𝜀2 − (𝑥𝑖𝑤2 + 𝑒𝑏2)) +𝐶2𝑒
𝑇

𝑛∑
𝑖=1
𝜂𝑖

)
,

(4)

subject to

𝑦𝑖 − (𝑥𝑖𝑤1 + 𝑒𝑏1) ≥ 𝑒𝜀1 − 𝜁𝑖, 𝑦𝑖 − (𝑥𝑖𝑤2 + 𝑒𝑏2) ≥ 𝑒𝜀2 − 𝜂𝑖,
where 𝐶1, 𝐶2 > 0 and 𝜀1, 𝜀2 ≥ 0 are the TSVR hyperparameters and 
𝜁𝑖, 𝜂𝑖 are the slack vectors introduced as a soft margin to the error 𝜀 in 
an optimization problem. This TSVR is much faster than the standard 
SVR.

The final regressor:

1

𝑓 (𝑥) =

2
((𝑤1 +𝑤2)𝑇 𝑥+ (𝑏1 + 𝑏2)). (5)
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Fig. 2. Model framework development of SVR variants.
Table 2

Hyper-parameters of support vector regression 
variants with rbf kernel.

Model Tunable parameters with range

𝜀-SVR 𝜀: error insensitivity parameter

𝜎: kernel bandwidth , C: regularization

LS-SVR 𝜎: kernel bandwidth

𝛾 : regularization

TSVR 𝐶1 and 𝐶2: regularization, 𝜀1, 𝜀2
𝜎: kernel bandwidth

𝜀-TSVR 𝐶1 𝐶2𝐶3 𝐶4: Regularization, 𝜀1, 𝜀2
𝜎: kernel bandwidth

2.4. 𝜀TSVR

The 𝜀TSVR is extended from TSVR that determines the pair of 𝜀-
insensitive functions by solving two convex optimization problems [35].

𝜀TSVR considers an added regularization term that solves the ill-
conditioning problem, the objective function as(1 1 )
4

𝑚𝑖𝑛
2
𝐶3(𝑤𝑇1𝑤1 + 𝑏21) + 2

𝜁∗𝑇 𝜁 +𝐶1𝑒
𝑇 𝜁 ,
𝑚𝑖𝑛

(1
2
𝐶4(𝑤𝑇2𝑤2 + 𝑏22) +

1
2
𝜁∗𝑇 𝜁 +𝐶2𝑒

𝑇 𝜁

)
, (6)

subject to

𝑌 − (𝑋𝑤1 + 𝑒𝑏1) = 𝜁∗, 𝑌 − (𝑋𝑤1 + 𝑒𝑏1) ≥ −𝑒𝜀1 − 𝜁, 𝜁 ≥ 0,

𝑌 − (𝑋𝑤2 + 𝑒𝑏2) = 𝜁∗, 𝑌 − (𝑋𝑤2 + 𝑒𝑏2) ≥ −𝑒𝜀2 − 𝜂, 𝜂 ≥ 0.

In the optimization problem 𝐶1, 𝐶2, 𝜀1, 𝜀2 are the hyperparameters that 
determine the regression performance (See Table 2.). The final regressor 
is the mean of two functions 𝑓1(𝑥) and 𝑓2(𝑥) given as

𝑓 (𝑥) = 1
2
[𝑓1(𝑥) + 𝑓2(𝑥)] +

1
2
[(𝑤1 +𝑤2)𝑇 𝑥+ (𝑏1 + 𝑏2)]. (7)

2.5. Performance metrics

The prediction accuracy in terms of error is assessed by computing 
the following metrics mathematically expressed as

𝑅𝑀𝑆𝐸 =

[
1
𝑛

𝑛∑
𝑖=1

(𝑥̂𝑖 − 𝑥𝑖)2
]1∕2

, 𝑀𝐴𝐸 =

[
1
𝑛

𝑛∑
𝑖=1

|𝑥̂𝑖 − 𝑥𝑖|]∑𝑛

𝑖=1(𝑥̂𝑖 − 𝑥̄𝑖)
2 ∑𝑛

𝑖=1(𝑥̂𝑖 − 𝑥𝑖)
2

𝑆𝑆𝑅∕𝑆𝑆𝑇 = ∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄𝑖)2
𝑆𝑆𝐸∕𝑆𝑆𝑇 = ∑𝑛

𝑖=1(𝑥𝑖 − 𝑥̄𝑖)2
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Fig. 3. Soiling station waveform of selected dataset.

𝐼𝑂𝐴 = 1 −
𝑛∑
𝑖=1

(𝑥̂𝑖 − 𝑥𝑖)2∕
𝑛∑
𝑖=1

(|𝑥̂𝑖 − 𝑥̄𝑖|+ |𝑥1 + 𝑥̄𝑖|)1∕2
𝑈1 =

√√√√1
𝑛
×

𝑛∑
𝑖=1

(𝑥̂𝑖 − 𝑥𝑖)2∕
⎛⎜⎜⎝
√√√√1
𝑛
×

𝑛∑
𝑖=1
𝑥2
𝑖
+

√√√√1
𝑛
×

𝑛∑
𝑖=1
𝑥̂2
𝑖

⎞⎟⎟⎠
𝑈2 =

√√√√1
𝑛
×

𝑛∑
𝑖=1

((𝑥𝑖+1 − 𝑥̂𝑖+1)∕𝑥𝑖)2∕

√√√√1
𝑛
×

𝑛∑
𝑖=1

((𝑥𝑖+1 − 𝑥̂𝑖)∕𝑥𝑖)2

where, 𝑥̂𝑖 is predicted, 𝑥𝑖 actual, and 𝑥̄ is the mean value notation of 
testing samples.

3. Hybrid models framework process

The decomposition of the soiling signal involves utilizing both 
Wavelet Transform (WT) and Empirical Mode Decomposition (EMD) 
methods. The subsequent section elucidates the framework necessary 
for the hybrid model.

3.1. Soiling datasets

To evaluate the SVR-based hybrid forecasting models, soiling data 
obtained from NREL (National Renewable Energy Laboratory) Soiling 
Station Number 3 in Imperial County, Calipatria, CA, spanning from De-

cember 30, 2014, to December 31, 2015, with a total of 324 recorded 
samples utilized [36]. In Fig. 3, the variations in soiling ratio for se-

lected datasets are illustrated. The soiling ratio exhibits a saw-tooth 
wave-type pattern. Instances of natural events, such as rainfall, or man-

ual cleaning result in a sudden upward shift in the daily soiling ratio, 
also referred to as the performance index. This is followed by a linear 
decline each day due to soiling until the occurrence of the next cleaning 
event.

3.2. Decomposition of mother signal

Soiling forecasting employs hybrid models that integrate wavelet 
transform or Empirical Mode Decomposition of the data signal along 
with various versions of Support Vector Regression (SVR) prediction 
models. In Fig. 4 (a), the conceptual block diagram illustrates the hybrid 
model incorporating wavelet transform.

Soiling raw data undergoes decomposition into various frequency 
signals to be utilized in SVR forecasting models. The selected fil-

ter configuration is Daubechies ‘db4,’ employing a 5-level decompo-

sition. Wavelet transform formulated as discrete (DWT) and continuous 
wavelet transform (CWT) are defined as

𝐵(𝑢, 𝑣) = 2−𝑢∕2
𝑁−1∑
𝑡=0

𝑑(𝑥) 𝜙
(
𝑡− 𝑣.2𝑢

2𝑢
)
,

𝐵(𝑎, 𝑏) = 1√ +∞

𝑑(𝑥) 𝜙
(
𝑥− 𝑏)

, (8)
5

𝑎 ∫
−∞

𝑎
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Table 3

Statistical information of decomposed signals by EMD.

Component Mean Std Min Max

Original 0.9753 0.0222 0.9178 1.0000

IMF1 -0.0006 0.0062 -0.0282 0.0273

IMF2 -0.0001 0.0095 -0.0270 0.0321

IMF3 -0.0008 0.0186 -0.0598 0.0400

IMF4 0.0004 0.0070 -0.0134 0.0141

IMF5 -0.0016 0.0065 -0.0100 0.0122

Res 0.9782 0.0046 0.9708 0.9856

where 𝑑(𝑥) is the soiling time series data of length 𝑁 , 𝜙(.) is the mother 
wavelet signal. The two signals obtained at each decomposition stage 
are approximate (A5) and detail signals (D1, D2, D3, D4, and D5) 
together form a matrix of input features for low-frequency and high-

frequency components, respectively. The soiling ratio is the output or 
target used in the forecasting algorithm. The decompositions of selected 
data along with the mother signal (S0) are shown in Fig. 4 (b) in red 
color, approximate signal (a5) in blue, and detailed signals (D1 to D5) 
in green color.

The EMD method decomposes the mother soiling signal into a num-

ber of Intrinsic Mode Functions (IMFs) and residue signals in time series 
[37]. The IMFs and residue are determined as following steps: (a) From 
the time series signal 𝑥(𝑡) forms its maxima 𝑥𝑢(𝑡) and minima 𝑥𝑙(𝑡) (b) 
determine to mean of maxima and minima as 𝑥𝑚(𝑡) =

𝑥𝑢(𝑡)+𝑥𝑙(𝑡)
2 (c) Ob-

tain detailed component as 𝑥𝑑 (𝑡) = 𝑥(𝑡) − 𝑥𝑚(𝑡) (d) The decomposition 
process will continue until any one of the following criteria satisfies, (i) 
𝑥𝑚 = 0, and (ii) number of zero crossings and extrema should differ by 
one or zero (e) Repeat above steps until obtaining the residue. EMD hy-

brid model framework is shown in Fig. 5 (a) and the decomposed results 
of the soiling signal are shown in (b).

In Fig. 5 (b), the IFM components are arranged in descending order 
of frequency, encompassing local features and trends of the soiling sig-

nal at various time scales. Notably, the high-frequency component, i.e., 
IMF 1, reflects abrupt shifts in the soiling signal primarily attributed to 
cleaning events. Conversely, the low-frequency components from IMF 2 
to IMF 5 delineate the rate and trend of soiling between two cleaning 
events or uncertain occurrences such as dust storms. Additionally, Ta-

ble 3 provides statistical details for all EMD decomposed components, 
including mean value (Mean), standard deviation (Std), minimum value 
(Min), and maximum value (Max).

The standard deviation is a metric to gauge the statistical distribu-

tion and dispersion between two points within a given dataset. Upon 
comparing the standard deviation (std) values of all Intrinsic Mode 
Functions (IMFs) with the original data, it becomes evident that the 
decomposed signals exhibit greater smoothness and stability than the 
original data. Consequently, all IMFs and a residue signal are chosen 
as features for training the EMD-SVR variants model, as they provide 
detailed information about the soiling signal and its cumulative trend, 
respectively. Similarly, all detailed and approximation signals are em-

ployed as features for training the model in WT-SVR variants.

4. State of the art: soiling categorization

Categorizing dust accumulation is crucial for the robot system to 
choose the right cleaning agent and activate the actuator. Table 4

presents the statistical data on soiling. In contrast, Fig. 6 illustrates the 
categorization of soiling ratio data and dust levels across different large-

scale PV generating stations. The figure reveals four distinct cumulative 
dust levels, demarcated by natural cleaning events indicated by ver-

tical blue lines. Anticipating soiling occurrences based on dust levels 
enables the robot to prepare and deploy appropriate cleaning agents 
with functional actuators. In scenarios of nonuniform soiling, it be-

comes essential to identify dust levels and their locations for optimizing 
the cleaning process. Events like dust storms introduce uncertainties, 

leading to nonuniform dust profiles over the panels.
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Fig. 4. Hybrid model using wavelet transform and SVR models (a) framework of hybrid model (b) Transformed wave of selected dataset.

Fig. 5. Decomposed Intrinsic modes functions using empirical mode decomposition methods (a) framework of EMD hybrid model, (b) decomposed soiling signal.
Fig. 6. Soiling categorization by accumulation level.

Table 4

Statistics of selected soiling data.

Soiling stations (Dataset) Max Min Mean Std Dev

Calipatria CA (A) 324 1.0 162.5 93.67497

4.1. Adaptation in optimized cleaning

The primary challenge faced by photovoltaic panels in desert regions 
lies in the accumulation of surrounding dust and periodic dust storms, 
resulting in unpredictable dust deposition. The uneven nature of dust 
6

accumulation renders traditional cleaning robots inefficient, leading to 
extended cleaning times and higher energy consumption. To address 
this issue, short-term forecasting methods are employed alongside fully 
automatic cleaning robots equipped with various cleaning agents, en-

suring effective panel cleaning even during stormy conditions with 
improved energy efficiency and reduced cleaning time. The proposed 
robot integrates diverse cleaning actuators and agents, including syn-

thetic jet actuators, spherical actuators, solenoid actuators, microfiber 
brushes, steam generation kits, and more. Short-term forecasting hy-

brid models utilize meteorological features such as seasons, geographic 
plant location, weather conditions, and wind speed to predict dust lev-

els for the next 2 to 3 hours. The robot then adapts to the predicted dust 
level, preparing for optimal panel cleaning. For instance, if the predic-

tion model anticipates a dust storm within the next hour with a level 
of 0.80, relying solely on a brush would be insufficient. Consequently, 
the robot activates an array of synthetic jet actuators. This adaptive 
approach allows the robot to choose the most suitable actuator for ef-

ficient cleaning based on the predicted soiling levels. Fig. 7 illustrates 
fully automatic robots, each selected according to the predicted soiling 
levels.

5. Results and discussions

The results are represented into three categories: (i) without any 
decomposition method, and only SVR variants are used, (ii) wavelet 

transforms decomposition plus SVR variants, and (iii) empirical mode 
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Fig. 7. Different actuators and cleaning agents of robot.
Table 5

Performance metrics of SVR variants only.

Model RMSE MAPE MAE SSR/SST SSE/SST

IOA Acc 𝑈1 𝑈2 CPU time (s)

𝜀SVR 0.0096 0.3620 0.0035 0.9142 0.0925

0.9996 99.6380 0.0050 1.1060 0.6015

LS-SVR 0.0096 0.3807 0.0037 0.8933 0.0920

0.9996 99.6193 0.0050 1.3796 0.0837

TSVR 0.0097 0.3386 0.0033 0.9307 0.0938

0.9996 99.6614 0.0050 1.2443 0.5134

𝜀TSVR 0.0100 0.3389 0.0033 1.0365 0.0992

0.9996 99.6611 0.0052 0.2101 0.0931

RF 0.0147 1.0487 0.0099 4.3e-04 0.2151

0.9989 98.9513 0.0076 0000 1.6801

decomposition plus SVR variants. The Mean Absolute Error (MAE) is 
the main focus of observation, and the relative percentage improve-

ment of the two decomposed methods is shown in terms of MAE. 
Around 75% of the data is used for training and the rest as test-

ing for all three categories. The Radial basis (kernel) function (RBF) 

𝑘(𝑥, 𝑥𝑖) = 𝑒

(
− ||𝑥−𝑥𝑖||2

2𝜎2

)
helps build the regression models with band-

width 𝜎. The hyper-parameters 𝐶1, 𝐶2, 𝐶3, and 𝐶4 are tuned manually 
and by a grid search. The Dataset of soiling taken from NREL’s Soil-

ing Station Number 3 in Imperial County, Calipatria, California, from 
December 30, 2014, to December 31, 2015, is chosen to test the cat-

egories’ models and consists of 324 samples, out of which 75% (243) 
are used for training, and the remaining (81) for testing purposes. The 
forecasting models of Random Forest (RF) are selected as the bench-

mark because they exhibit the minimum Mean Absolute Error (MAE) 
[23]. Consequently, all SVR variants are compared among themselves 
and with the RF model. All performance metrics for soiling forecasting 
depicted for SVR variants with wavelet transform decomposition mod-

els and with empirical mode decomposition, respectively are shown in 
the Tables 5, 6, and 7.

5.1. Prediction results

The performance indices for SVR variants in terms of forecasting 
values are documented in Table 5. In terms of Mean Absolute Error 
(MAE), all four variants of Support Vector Regression (SVR) surpass 
the Random Forest (RF) model. The identification of the optimal SVR 
model involves a comparison among these four SVR variants. For the 
given soiling data, MAE-wise 𝜀TSVR and TSVR model outperformed 
𝜀SVR and LSSVR by 5.71% and 10.81% respectively. Among TSVR and 
𝜀TSVR, TSVR outperformed 𝜀TSVR by 3% in terms of RSME and ex-

cept CPU time. Overall, TSVR is better than other models quantitatively 
also, the accuracy of TSVR is presented graphically in Fig. 8 (a). The 
hybrid model forecasted performance indices for WT-SVR variants are 
collected in Table 6. The benchmark model parameters are identified 
using the wavelet transform to decompose the soiling signal in unison 
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with the Random Forest method.
Table 6

Performance metrics for SVR variants using wavelet transform decomposition.

Model RMSE MAPE MAE SSR/SST SSE/SST

IOA Acc 𝑈1 𝑈2 CPU time (s)

WT-𝜀SVR 0.0014 01202 0.0012 0.9290 0.0019

1.0000 99.8798 0.0007 1.2576 0.5359

WT-LSSVR 0.0006 0.0508 0.0005 0.9667 0.0004

1.0000 99.9492 0.0003 0.5831 0.0547

WT-TSVR 0.0001 0.0107 0.0001 0.9921 0.0000

1.0000 99.9893 0.0001 0.0019 0.3220

WT-𝜀TSVR 0.0009 0.0517 0.0005 0.9795 0.0008

1.0000 99.9483 0.0005 4.7077 0.1301

WT-RF 0.0238 2.0552 0.0196 1.8558 0.5656

0.9954 97.9448 0.0123 0000 3.7535

Table 7

Performance metrics for SVR variants using empirical mode decomposition.

Model RMSE MAPE MAE SSR/SST SSE/SST

IOA Acc 𝑈1 𝑈2 CPU time (s)

EMD-𝜀SVR 0.0009 0.0763 0.0007 0.9788 0.0009

1.0000 99.9237 0.0005 1.4421 0.5201

EMD-LSSVR 0.0006 0.0302 0.0003 0.9837 0.0002

1.0000 99.9698 0.0002 2.7780 0.0851

EMD-TSVR 0.0002 0.0158 0.0001 0.9876 0.0001

1.0000 99.9842 0.0001 0.0611 0.3948

EMD-𝜀TSVR 0.0003 0.0246 0.0002 0.9909 0.0001

1.0000 99.9754 0.0002 10.8911 0.0707

EMD-RF 0.0247 2.1599 0.0205 2.1442 0.6083

0.9945 97.8401 0.0127 0000 4.8047

The WT-TSVR model demonstrated superior performance across all 
metrics except computational speed. The WT-𝜀TSVR variant exhibits 
faster computation times in comparison. WT-TSVR surpassed WT-𝜀

SVR, WT-LSSVR, and WT-𝜀TSVR by 91.67%, 80%, and 80% in terms 
of MAE, respectively. Fig. 8(b) illustrates the prediction accuracy of the 
WT-TSVR model, particularly evident at the sharp edges of the actual 
data.

Similar performance indices for empirical mode decomposition are 
shown in Table 7. A combination of the empirical mode decomposi-

tion and the Random Forest model helps identify the parameters for 
the benchmark model. Within the EMD-SVR variants, EMD-TSVR out-

performs all other models across all performance metrics except for 
the required computation time. In MAE comparison, EMD-TSVR sur-

passes EMD-𝜀SVR, EMD-LSSVR, and EMD-𝜀TSVR by 85.71%, 66.67%, 
and 50%, respectively. Fig. 8(c) illustrates that EMD-𝜀SVR and, in some 
instances, EMD-𝜀TSVR exhibit lower accuracy or fail to predict the orig-

inal data, particularly noticeable at sharp curves.

The main essence of this research is to compare decomposed SVR 
variants, specifically WT-SVR and EMD-SVR variants, with conventional 

SVR models. The absolute MAE errors for all three categories are de-
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Fig. 8. Forecasting charts (a) for SVR variants, (b) for WT-SVR variants, and (3) for EMD-SVR variants.
picted in Fig. 9(a). Among these, the EMD-SVR variant exhibits superior 
prediction results compared to the others.

In terms of MAE, EMD-𝜀SVR outperforms SVR variants and WT-

variants by 80% and 41.67%, respectively. In the case of EMD-LSSVR, 
it is better by 91.89% and 40%. In the case of EMD-𝜀 TSVR, it is bet-

ter by 93.93% and 60%. And finally, EMD-TSVR gives the best result, 
i.e., 96.97%. The WT-TSVR and EMD-TSVR performance are the same. 
Next, the relative percentage improvement in MAE error of WT variants 
and EMD variants concerning MAE error in SVR variants are calculated 
and shown in Table 8 and Fig. 9 (b).

Within each model, the EMD decomposition prediction method 
demonstrates a greater reduction in error compared to the WT decom-

position prediction method. At the end of this result discussion, the 
TSVR model, WT-TSVR model, and EMD-TSVR model are best among 
the rest of the SVR variants, respectively. The EMD-TSVR method gives 
better results than the WT-TSVR method, and the superiority of the 
EMD-SVR variants is checked by comparing TSVR with WT and EMD 
decomposition methods. In identifying random events, the EMD-TSVR 
surpasses the other two models in accuracy, as seen in the enlarged 
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view shown in Fig. 10.
Table 8

Relative percentage error improvement of 
mean absolute error with respect to SVR 
variants.

Model WT (%) EMD (%)

𝜀-SVR 65.71 80.00

LSSVR 85.71 91.43

TSVR 97.14 97.14

𝜀-TSVR 85.71 94.29

6. Conclusions

Random events and dust storms detrimentally impact PV energy 
generation, and cleaning robots require additional energy for detecting 
and cleaning soiling. For energy-efficient cleaning, accurate input data 
regarding random events and uneven soiling is crucial for the robot. In 
this research work, a machine learning model for soiling detection in so-

lar farms is developed using four SVR variants (namely, 𝜀SVR, LSSVR, 

TSVR, and 𝜀TSVR) and hybrid SVR models incorporating the wavelet 
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Fig. 9. MAE error of TSVR, WT-TSVR, and EMD-TSVR variants (a) absolute error, (b) relative percentage error.

Fig. 10. Forecasting results of TSVR, WT-TSVR and EMD-TSVR.
transform (WT) and empirical mode decomposition (EMD) techniques. 
The comparison is conducted across three categories: within SVR vari-

ants, with wavelet transform (WT-SVR variants), and with empirical 
mode decomposition (EMD-SVR variants). The random forest algorithm 
serves as the benchmark model. The soiling signal is decomposed using 
a DB-4 wavelet filter at level 5. The optimal selection of SVR hyperpa-

rameters, such as regularization constants (c) and RBF bandwidth (s), 
is crucial in enhancing the soiling forecasting accuracy of these hybrid 
models. Model performance is assessed based on Mean Absolute Error 
(MAE), and the findings are as follows:

• Across all three categories, both conventional SVR variants and the 
hybrid SVR variants with WT and EMD outperform the benchmark 
Random Forest (RF) model for the soiling dataset.

• TSVR exhibits the lowest Mean Absolute Error (MAE) among the 
SVR variants. However, 𝜀TSVR requires the least computational 
time among the four models due to a smaller-sized optimization 
problem. The preference should be as per the most critical require-

ments.

• Within the three categories, the two hybrid models, WT and EMD, 
surpass SVR variants in MAE error and computational time. No-

tably, the EMD decomposed model is more efficient than WT, 
exhibiting an even further reduced relative percentage error. Addi-

tionally, EMD models demonstrate superior efficiency in forecast-

ing random events compared to WT, which is attributed to their 
lower computational time requirements.

• When evaluating the overall performance indices across all regres-

sors, the conventional TSVR and its EMD hybrid models emerge as 
preferred choices for short-term forecasting.

A significant constraint of short-term forecasting models is their de-

pendency on extensive datasets for identifying random events, a factor 
crucial for distinguishing dust storms, uncertainties of natural clean-

ings, and the nonlinearity of the soiling rates. The future work of this 
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research is to implement the hybrid model on a controller for a multi-
cleaning agent robot, as recommended in the state-of-the-art literature, 
for validation purposes.
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