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A B S T R A C T   

Clustering historical electricity consumption data is very important for creating representative demand profiles 
for the planning and operation of the power grids. This paper investigates a multi-dimensional framework for 
data clustering, which takes scattering and separation metrics, as well as the number of clusters into account. A 
combination of wavelet mutation with the Invasive Weed Optimization (IWO) method for clustering features is 
proposed. One notable advantage of the IWO method over other metaheuristic optimization algorithms is its 
ability to dynamically adapt the number of weed colonies during the search process, resulting in improved 
exploration and exploitation of the search space. The proposed strategy is applied to cluster the electricity 
consumption data from a large municipal government center in Perth, Western Australia. The suggested method 
is then evaluated by comparing it with the well-known method in the literature, namely, the k-means technique. 
After the data clustering, the obtained results are implemented in the design of a multi-microgrid system under 
two different scenarios of cooperative and noncooperative modes. To evaluate the performance of the proposed 
method, the proposed method is implemented on the operational planning of a real multi-microgrid distribution 
system in Western Australia using linear programming to take the advantage of the mathematical-based solvers. 
After performing some investigations, the cooperative mechanism, where the microgrids have participated in 
supplying the demand of microgrids was found to yield to greater operational and investment cost mini-
mimzation. In terms of numerical comparison, the total cost in the cooperative model is 6.5% lower than that in a 
non-cooperative situation.   

1. Introduction 

Microgrids, which come in diverse capacities and capabilities, have 
evolved into indispensable components of distribution networks. While 
some microgrids prioritize flexibility, others focus on energy storage and 
the integration of renewable energy sources (Gholami and Jazebi, 
2020a). However, the true potential of microgrids lies in their ability to 
collaborate with one another, forming a multi-microgrid platform (Xu 
et al., 2018). This coordination of multiple microgrids offers a unique 
opportunity to maximize the advantages of each microgrid and enhance 
the overall efficiency and cost-effectiveness of the system. When 

multiple microgrids work in unison within a network, they can harness 
their unique strengths to create a more flexible and resilient energy 
infrastructure. Collectively, these microgrids can optimize the utiliza-
tion of renewable resources, enhance grid stability, and adapt to 
changing energy demands. Furthermore, this collaborative approach not 
only benefits individual microgrids but also enhances the sustainability 
and reliability of the entire distribution network. 

Besides, increasing energy prices, the threat of climate change and 
corporate environmental sustainability aims have prompted numerous 
corporate, institutional, and public organizations to place greater 
emphasis on regulating energy consumption and supply on their side of 
the municipal power grid. The power systems of such organizations can 
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be controlled as a (virtual) microgrid, with dispersed forms of distrib-
uted resources (e.g., renewable sources, batteries) and loads that are 
operating parallel to the main grid. Organizations would be able to 
properly monitor and regulate their energy usage and generation (from 
renewables and batteries) through the application of a long-term virtual 
microgrid planning algorithm (Azizivahed et al., 2020). Identification 

and measurement of the consumption and generation patterns at an 
organization’s facilities are the foundational step to devising a robust 
planning framework. Limiting demand uncertainty by creating indica-
tive demand profiles for facilities that accurately capture the features of 
load profiles can lead to more cost-effective long-term network planning 
(Arefi et al., 2016). Electricity demand can be characterized through 

Nomenclature 

ΘC the decision-variables vector, which denotes the set of 
observations for cluster centriods 

Nob the number of metrics and 
kth the weighting of kth metric (Mrtk). The weighting of the 

factors will depend on the decision- maker’s point of view 
Ncltr and Ɲi Respectively, the number of clusters and observations in 

the ith cluster, respectively 
ai,n the nth observation in the ith cluster 
ci the centroid of the ith cluster. 
Si and Si the square mean of the Euclidean distance between each 

observation and the normalized form of it, respectively 
Mrt1 the first metric obtained by the scattering rate of 

observations within each cluster 
Di,j the Euclidean distance reversal of the ith and the jth clusters 
Di,j it is obtained by dividing Di,j by the maximum Euclidean 

distance reversal through clusters to give the normalized 
value of Di,j 

M i the maximum value of Di,j for the ith and the jth clusters; 
and 

Mrt2 the second metric obtained from the mean of M i 

Nmax
cltr and Nmin

cltr the maximum and the minimum number of clusters 
Smax and Smin the predetermined maximum and minimum number of 

produced seeds, respectively 
OFbest and OFworst the fitness functions of the best and worst 

population, respectively 
Sp and OFp the number of seeds generated by the pth seed and the 

amount of fitness functions for the pth population 
σitr the standard deviation at itrth iteration;;; and α is the 

nonlinear modulation index 
itrmax the maximum user-defined iteration 
σfinal and σinitial the final and initial standard deviations, respectively 
pth and qth randomly chosen weed and its qth element that will go 

through wavelet mutation at the ith iteration within the 
sorted population 

ΘCmax
q and ΘCmin

q respectively show the upper and lower bounds of 
for the qth component of the decision-variable vectors 

σ is the mother wavelet 
r a random integer produced from [− 2.5 h 2.5 h] 
h and hmax the dilation parameter and its maximum limit (i.e., hmax=

10,000), respectively 
t the intervals of scheduling every hour ∈ ΩT 
n,m the indexes of microgrid (∈ NMG)

i, j the indexes of network nodes (∈ Nnode)

ϱDNO
expense and ϱMG

expense the cost associated with the distribution system 
operator (DSO) and microgrids, respectively; 

Ψt
sub and Ψt,n

MG the price of energy at substation at tth hour and the 
price of energy exchange of nth microgrid at tth hour, 
respectively; 

Pt
sub the substation’s real power during tth hour ∈ Psub; 

Pt
n,m the active power exchange from nth microgrid to mth 

microgrid at tth hour ∈ Pt
EEMG; 

Pt
demand the system’s power consumption at tthhour 

Pt
loss the system’s power went out in the tth hour 

Pt
EEMG a set of microgrids’ power exchanges during the tth hour 

∈ PEEMG 

Pn,t
PV the electricity generated by nth PV at tth hour 

PBATch and PBATdis the power of charge and discharge of the nth 

battery at tth hour 
OCn

DER the operating cost for renewable sources of energy for nth 

microgrid 
OCn,t

BAT the cost of operating the battery for nth microgrid at tth hour 
ξPV

M the investment cost for PV panels for maintenance and 
repairs over a year 

Ψn
PV PV panel investment rate in nth microgrid 

PSize,n
PV PV panel size in nth microgrid 

Ψn
cyc the cost of cycling battery in nthmicrogrid 

βn,t the binary variable indicates the charge and discharge 
states of the battery of nth microgrid at tth hour ∈ βt; 

Pn,t
BATch 

and Pn,t
BATdis

the charging and discharging rates of the battery in 
nth microgrid at tth hour, respecyovely 

Pmax
ch and Pmax

dis the maximum charging and discharge rates of the 
battery in nth microgrid at tth hour, respectively 

ρch and ρdis the efficiency of the charge/discharge process, 
respectively 

SOCn,t the state of charges of the battery in nth microgrid at tth 

hour 
SOCmin and SOCmax; allowable ranges of state of harges of the battery 
SOCn,ΩT and SOCn,0 the SOC of the battery at the final and initial 

hours of scheduling, respectively 
ƝES the maximum operation of charges and discharges of the 

battery over the time frame 
Pt

D,i and Qt
D,i the real and reactive electricity demands at ith node at 
tth hour, respectively 

Pt
G,i and Qt

G,i the real and reactive electricity generations at ith node 
at tth hour, respectively 

Vsub the voltage on the substation, (i.e., =1p.u.); 
Vt

real,i and Vt
img,i the part of the real and imaginary voltages of ith node 

at tth hour, respectively 
It
real,iand It

img,i the part of the real and imaginary nodal current 
injection of ith node of the network at tth hour, respectively 

It
real,(i,j) and It

img,(i,j) the art of the real and imaginary branch current 
between ith and jth nodes at tth hour, respectively 

gi,j and bi,j the line conductance and susceptance between the ith and 
jth nodes, respectively 

Nnode the total number of nodes of the network 
Vmax and Vmin the boundaries of node voltages 
Imax
(i,j) the maximum current capacity of the line between ith and 

jth nodes 
T (.) a set of the specified continuous range’s discretization 

( − (),+() ), () = Vmax, Imax
(i,j)
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clustering, which enables representative load profile groups to be 
created (McLoughlin et al., 2015). The research outlined in (McLoughlin 
et al., 2015) found the self-organizing maps (SOM) clustering approach 
to be among the most successful for dividing residential electricity 
consumption datasets into load profile groups without missing distinc-
tive data related to the load profile shape. For peak-valley analysis and 
predicting average consumption and power loss for planning, one study 
(Deepak Sharma and Singh, 2014) employed the k-means clustering 
technique to group comparable load profiles within different zones. 
Clustering of historical load profile data has also been employed for load 
profile analysis to customize energy retail pricing for residential cus-
tomers (Yang et al., 2019). Alternative clustering algorithms to k-means 
and SOM that have been used for load profile analysis include flexible 
k-means, hierarchical, finite mixture model, fuzzy c-means, support 
vector, two-stage with fast wavelet transformation (FWT) and g-means, 
and subspace project method based clustering, as well as clustering by 
fast search and find of density peaks (Kwac et al., 2014; Li et al., 2015; 
Haben et al., 2016; Zhang et al., 2012; Chicco and Ilie, 2009; Mets et al., 
2016; Piao et al., 2014; Wang et al., 2016; Narimani et al., 2019). The 
focus of these clustering algorithms, however, has been on either 
increasing cluster separation or minimizing the dispersion of members 
within a group. Those methods that do consider both factors do not take 
them into account as a multi-objective to enable decision-makers to 
emphasize the characteristic that best fits their case or analysis. 

Considering this fact that, the proposed formulation seeks the 
optimal solution, eg., the best clustering with the least members but 
more accurate, an optimization approach is essential. There are various 
optimization tools. For example, in reference, the authors developed a 
heuristic approach to clustering the data just by considering the centroid 
of clusters (Gholami et al., 2022a). However, a unique hybridized 
method to optimize the clustering objective function using both Invasive 
Weed Optimization (IWO) and wavelet mutation strategy is provided in 
this paper (Azizivahed et al., 2021a). The IWO mimics the behavior of 
colonizing weeds and can locate desired minima quickly (Mehrabian 
and Lucas, 2006). The outcomes of implementing this proposed meth-
odology to metered consumption data from the Civic Centre of a large 
local government (municipality), in Perth, Western Australia (WA) are 
also presented. The test facility is an administrative building, which is 
comparable to a commercial office building. Comparisons of each sea-
sonal cluster utilizing the innovative clustering strategy with ones 
created through the well-known k-means and original IWO approaches 
are made using Davies-Bouldin and silhouette indices (Arbelaitz et al., 
2013). 

Microgrids are emerging energy systems that may be operated under 
both grid-connected and islanded modes. In terms of grid-connected 
situation, they are able to trade power with the upstream network. 
This mode is excellent for areas with consistent grid connection. 
Microgrids, on the other hand, may function in an isolated mode, 
operating autonomously of the primary grid and producing, storing, and 
controlling the electricity they require (Gholami and Jazebi, 2020b). 
With regard to the plan of microgrids, some investigations have been 
done so far. For example, authors of (Gholami et al., 2022b) developed 
an optimization approach for optimal economic dispatch of islanded 
networked microgrids (MGs) integrated with thermal and renewable 
resources. Due to the fact that islanded MGs are under high penetration 
of renewable resources, using energy storage in the presence of such 
resources is inevitable. As a result, researchers in (Zhang et al., 2016) 
developed a bi-level approach for the planning of islanded MGs, where 
the upper level tries to identify the sizing of resources (renewables and 
energy storages), but the dispatch of these resources is done at lower 
level. In order to make the model much more realistic, the uncertainties 
with resources in MGs that are operated in both mentioned modes were 
investigated in (Khodaei et al., 2015), (Narayan and Ponnambalam, 
2017). In more detail, a team of researchers in (Narayan and Ponnam-
balam, 2017) devised a stochastic planning method for optimizing the 
allocation of resources within islanded microgrids. Their primary 

objective was to mitigate the planning risk by integrating considerations 
related to the uncertainties associated with renewable energy resources. 
Besides, Authors of (Mina-Casaran et al., 2021) concentrated on the 
incorporating demand response programming in the planning of 
microgrids. In deeper explanation, they developed a planning approach 
for optimal sizing of DERs in microgrids under considering demand side 
management as well. The model was a bi-level programming, where the 
investment was calculated in upper level while the lower level solves the 
operation part of sized resources. The study in (Contreras et al., 2019) 
explored the microgrid planning within a multi-objective framework. To 
address this complex task, the researchers applied the non-dominated 
sorting genetic algorithm II (NSGA-II) to efficiently handle the chal-
lenges associated with microgrid planning, particularly in minimizing 
power balance discrepancies in islanded mode. An intriguing aspect of 
this research lies in its use of a multi-objective approach. However, it’s 
worth noting that the reliance on heuristic methods in this approach 
might not ensure the attainment of a globally optimal solution. A 
research in (Shawon et al., 2023) focused on the first phases of microgrid 
design by the strategic placement and size of DGs to reduce energy losses 
by directly delivering electricity to local loads. In other words, it pre-
sents a non-linear programming (NLP) approach for DG placement that 
approaches planning as AC optimum power flow (OPF) equations. The 
efficacy of the strategy is proven using both an IEEE 33-bus test system 
and a genuine 404-bus distribution system run by Saskatoon Light and 
Power in Canada. Importantly, in terms of performance, the suggested 
strategy outperforms previous alternatives. However, the model was 
nonlinear because of AC power flow equations as well as the collabo-
ration between microgrids have not been investigated. Accordingly, the 
linear load flow is still essential to have accurate and promising solu-
tions. According to the aforementioned papers, it is clear that a 
multi-microgrid system was designed without collaboration among 
them. Consequently, we still need to develop a planning approach for 
the simultaneous planning of multi-microgrid systems considering the 
collaboration between MGs and the upstream grid. 

The clustered data is also used to present a concept for electricity 
trading of MGs, specifically where certain MGs are controlled by an 
organization, using a case study of a local government in WA. In the 
developed framework, MGs can start trading electricity within and be-
tween themselves. Trading would occur between MGs and facilities 
within MGs that have excess production (from distributed energy re-
sources such as renewables and batteries) and other MGs and facilities 
that do not have enough production to satisfy the demands. However, 
MGs would be expected to pay for the use of the distribution system, 
referred to as network charge, as well as their share of network loss as a 
result of the energy transactions. Network loss is considered and esti-
mated in the framework by using an efficient load flow. The proposed 
method is then tested on a multi-microgrid system in WA under two 
conditions, cooperation among MGs (active participation in the elec-
tricity exchange between each other) and non-collaborative (interaction 
with the grid only and not between MGs). The main contributions of this 
paper are as follows. 

• This study, which launched a sophisticated clustering method, sep-
arates historical data into groupings. This effective division not only 
organizes the data but also considerably reduces the computing 
strain, increasing data processing efficiency.  

• The article advances the discipline of power system analysis by 
presenting a unique approach for precisely calculating network los-
ses resulting from energy transactions. This approach, which is based 
on an effective and linear power flow model, offers an improved 
awareness of how energy exchange affects network performance.  

• The study provides a two methodologies for developing distributed 
multi-microgrid systems. In the first scenario, each microgrid indi-
vidually satisfies its load demands in a noncooperative setting. In the 
second scenario, power is bought and sold by microgrids as part of 
the collaboration. The advantages of cooperative microgrid 
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operation in terms of resource optimization are shown by analysis of 
these cases.  

• The study’s real evidence of decreased operating and investment 
expenses is one of its most persuasive features. Implementing the 
suggested structure, which skillfully combines energy storage and 
renewable energy sources within microgrids, results in significant 
cost reductions. These cost savings highlight the move to microgrid 
systems that are more robust and sustainable. 

2. Planning of multi-microgrid distribution system 

2.1. Problem visualization 

A mathematical-based optimization problem is used to describe how 
a distribution network with many private MGs operates. To have a 
distinct overview on the model, Fig. 1 illustrates the architectural dia-
gram of the proposed multi-microgrid distribution system. The distri-
bution network operator (DSO) monitors power exchange with the 
upstream network and energy exchange between MGs. In addition, each 
microgrid makes an effort to enhance its benefit or decrease its opera-
tional cost at the lowest level (Azizivahed et al., 2021b). 

2.2. Objective function and constraints 

In the DSO level, the distribution system operator organizes the 
power trading between MGs and between the grid and MGs. Following is 
a definition of the system’s (all sites and the network’s) objective 
function. Equation (01a) represents the objective function, encompass-
ing the cost components of utility, energy transaction between Micro-
grids (MGs), and maintenance costs for Battery Energy Storage Systems 
(BESS) and Photovoltaic (PV) systems. Equations (01b) and (01c) define 
the energy flow from one MG to another and establish the power balance 
across the entire network. Furthermore, Equations (01d) and (01e) 
detail the operation and maintenance costs associated with PV systems 
and BESS. Equations (01 f) to (01k) are dedicated to the operational 
constraints governing battery behavior, including the maximum and 
minimum state-of-charge (SOC), charge/discharge rates, and limitations 
on transitions between charging and discharging (Gholami et al., 2023). 
These constraints are crucial in prolonging BESS lifespan while ensuring 
efficient system performance. 

minμDSO ,μMG

[
ϱDSO

expense + ϱMG
expense

]

ϱDSO
expense =

∑

t∈ΩT

⎛

⎜
⎜
⎜
⎜
⎝

Ψt
subPt

sub +
∑

m∈NMG m∕=n

∑

n∈NMG

Ψt,n
MG

(
Pt

n,m

)+

⎞

⎟
⎟
⎟
⎟
⎠

ϱMG
expense =

∑

n∈NMG

OCn
DER +

∑

t∈ΩT

∑

n∈NMG

OCn,t
BAT (01a)  

s.t.

(
Pt

n,m

)+

= max
(

0,Pt
n,m

)
(01b)  

Pt
sub = Pt

demand +Pt
loss +

∑

n∈NMG

(
Pn,t

BATch
− Pn,t

BATdis
− Pn,t

PV
)

(01c)  

OCn
DER =

(
ξPV

M Ψn
PV PSize,n

PV
)/

365,∀n (01d)  

OCn,t
BAT = Ψn

cyc

⃒
⃒βn,t − βn,t− 1⃒⃒,∀t, n (01e)  

0 ≤ Pn,t
BATch

≤ Pmax
ch βt, ∀t, n (01 f)  

0 ≤ Pn,t
BATdis

≤ Pmax
dis (1 − βn,t), ∀t, n (01 g)  

SOCn,t = SOCn,t− 1 + ρchPn,t
BATch

− Pn,t
BATdis

/
ρdis,∀t, n (01 h)  

SOCmin ≤ SOCn,t ≤ SOCmax,∀t, n (01i)  

SOCn,ΩT = SOCn,0,∀t, n (01j)  

∑ΩT

t=2

⃒
⃒βn,t − βn,t− 1⃒⃒ ≤ ƝBAT ,∀n (01k)   

and: power flow constraints which are discussed as follows⋅                (01 l) 

where, t indicates the intervals of scheduling every hour ∈ ΩT ; n,m 
and i, j are, respectively, the indexes of microgrid (∈ NMG) and network 
nodes (∈ Nnode); ϱDNO

expense and ϱMG
expense signify the cost associated with the 

distribution system operator (DSO) and microgrids, respectively; Ψt
sub 

and Ψt,n
MG denote the price of energy at substation at tth hour and the price 

of energy exchange of nth microgrid at tth hour, respectively; Pt
sub dem-

onstrates the substation’s real power during tth hour ∈ Psub; Pt
n,m shows 

the active power exchange from nth microgrid to mth microgrid at tth hour 
∈ Pt

EEMG; Pt
demand is the system’s power consumption at tthhour; Pt

loss the 
system’s power went out in the tth hour; Pt

EEMG is a set of microgrids’ 
power exchanges during the tth hour ∈ PEEMG; Pn,t

PV the electricity 
generated by nth PV at tth; PBATch and PBATdis illustrates the power of 
charge and discharge of the nth battery at tth hour; OCn

DER denotes the 
operating cost for renewable sources of energy for nth microgrid; and 
OCn,t

BAT demonstrates the cost of operating the battery for nth microgrid at 
tth hour. ξPV

M is the investment cost for PV panels for maintenance and 
repairs over a year; Ψn

PV shows PV panel investment rate in nth microgrid; 
PSize,n

PV PV panel size in nth microgrid; Ψn
cyc demonstrates the cost of 

cycling battery in nthmicrogrid; βn,t illustrates the binary variable in-
dicates the charge and discharge states of the battery of nth microgrid at 
tth hour ∈ βt; Pn,t

BATch 
and Pn,t

BATdis 
are respectively the charging and dis-

charging rates of the battery in nth microgrid at tth hour; Pmax
ch and Pmax

dis 

represent the maximum charging and discharge rates of the battery in nth 

microgrid at tth hour; ρch and ρdis are the efficiency of the charge/ 
discharge process, respectively; SOCn,t is the state of charges of the 
battery in nth microgrid at tth hour which is kept between allowable 
ranges by SOCmin and SOCmax; SOCn,ΩT and SOCn,0 represent the SOC of Fig. 1. A visual representation of a multi-microgrid distribution system.  
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the battery at the final and initial hours of scheduling; and ƝES shows the 
maximum operation of charges and discharges of the battery over the 
time frame. 

The constraints and restrictions of the systems are addressed using 
the AC power flow formulas.The following KCL equations belong to  
Fig. 2, where the load flow is represented 

2Pt
D,i − Pt

G,i ≈
Pt

D,i

Vsub
Vt

real,i −
Qt

D,i

Vsub
Vt

img,i − VsubIt
real,i,∀i, t (02a)  

2Qt
D,i − Qt

G,i ≈
Qt

D,i

Vsub
Vt

real,i −
Pt

D,i

Vsub
Vt

img,i +VsubIt
img,i,∀i, t (02b) 

here Pt
D,i and Qt

D,i represent the real and reactive electricity demands 
at ith node at tth hour, respectively; Pt

G,i and Qt
G,i denote the real and 

reactive electricity generations at ith node at tth hour, respectively; Vsub is 
the voltage on the substation, (i.e., =1p.u.); Vt

real,i and Vt
img,i respectively 

signify the part of the real and imaginary voltages of ith node at tth hour; 
It
real,iand It

img,i respectively demonstrate the part of the real and imaginary 
nodal current injection of ith node of the network at tth hour; It

real,(i,j) and 
It
img,(i,j) are respectively the art of the real and imaginary branch current 

between ith and jth nodes at tth hour;. 
The aforementioned KCL equations can be approximated linearly 

using the second order of Taylor expansion. The real and imaginary 
components of the KVL equations are separated as follows: 

It
real,i =

∑

j∈Nnode

Gi,jVt
real,i −

∑

j∈Nnode

Bi,jVt
img,i (03a)  

It
img,i =

∑

j∈Nnode

Gi,jVt
img,i +

∑

j∈Nnode

Bi,jVt
real,i (03b)  

where gi,j and bi,j show the line conductance and susceptance between 
the ith and jth nodes, respectively; the total number of nodes of the 
network is also expressed by Nnode. 

The voltage and current constraints: 

(
Vmin)2

≤
(

Vt
real,j

)2
+
(

Vt
img,j

)2
≤ (Vmax)

2 (04a)  

(
It

real,(i,j)

)2
+
(

It
img,(i,j)

)2
≤

(
Imax
(i,j)

)2
(04b)  

It
real,(i,j) = gi,j

(
Vt

real,i − Vt
real,j

)
− bi,j

(
Vt

img,i − Vt
img,j

)
(04c)  

It
img,(i,j) = gi,j

(
Vt

img,i − Vt
img,j

)
+ bi,j

(
Vt

real,i − Vt
real,j

)
(04d)  

in the above expressions, Vmax and Vmin are the boundaries of node 
voltages; and Imax

(i,j) guarantees the maximum current capacity of the line 
between ith and jth nodes would not be rebelled. 

Finally, the hexagon linear approximation is deployed to linearize 
the mentioned equations (Gholami et al., 2022c): 

⃒
⃒
⃒Vt

img,i

⃒
⃒
⃒ ≤

− ζVt
real,i + (Vmax)

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Vmax)
2
− ζ2

√ , ∀t, i,∀ζ ∈ T Vmax (05a)  

Vmin ≤ Vt
real,i, ∀i, t (05b)  

⃒
⃒
⃒It

img,(i,j)

⃒
⃒
⃒ ≤

− ζIt
real,(i,j) +

(
Imax
(i,j)

)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Imax
(i,j)

)2
− ζ2

√ , ∀t, (i, j),∀ζ ∈ T Imax
(i,j)

(05c) 

Here T (.) is a set of the specified continuous range’s discretization 
( − (),+() ), () = Vmax, Imax

(i,j) ;. 
The amount of generation and demand of each node of the network 

is: 

PD
i = Pi,t

demand∀i ∈ NMG (06a)  

Qt
D,i = Pt

D,itan (φi)∀i ∈ Nnode (06b)  

Pt
G,i = Pi,t

PV +Pi,t
BATdis

− Pi,t
BATch

+

∑

m∈NMG m∕=i

((
Pt

i,m

)−

−
(

Pt
i,m

)+ )
∀i ∈ NMG (06c)  

Qt
G,i = Pt

G,itan (φi)∀i ∈ Nnode (06d)  

(
Pt

i,m

)−

= min
(

0,Pt
i,m

)
∀i ∈ Nnode (06e) 

In the suggested formulation, the equation of power loss has linear 
nature as given: 

Pt
loss = VsubIreal

sub +
∑

n∈NMG

(
Pn,t

PV +Pn,t
BATdis

− Pn,t
BATch

)
−

∑

j∈Nnode

Pj,t
demand ,∀t (07a) 

Problem decision variables. 
The decision variables vector of the proposed problem consists of the 

variables controlled by the DSO and each MGs separately. 
DSO: 

μDSO = [Psub,PEEMG, (PEEMG)
+
] (08a)  

Psub =
(
Pt

sub,∀t ∈ ΩT
)

(08b)  

Pt
sub =

[
P1,t

sub P2,t
sub … PN,t

sub

]
,∀t ∈ ΩT (08c)  

PEEMG =
(
Pt

EEMG, ∀t ∈ ΩT
)

(08d)  

Pt
EEMG =

(
Pt

n,m,∀n ∈ NMG,∀m ∈ NMG

)
,∀t (08e)  

Pt
n,n = 0, ∀t, n (08 f)  

Pt
m,n = − Pt

n,m, ∀t,m, n (08 g)  

(
Pt

EEMG

)+
=

((
Pt

n,m

)+

,∀n ∈ NMG,∀m ∈ NMG

)
,∀t (08 h) 

MG: 

μMG =
[
PBATch ,PBATdis , β

]
(08i)  

PBATch =
(

Pt
BATch

,∀t ∈ ΩT

)
(08j)  

Pt
BATch

=
[
P1,t

BATch
,P2,t

BATch
,…,PN,t

BATch

]
(08k)  

PBATdis =
(

Pt
BATdis

, ∀t ∈ ΩT

)
(08 l) 

Fig. 2. A simple network for KCL concept.  
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Pt
BATdis

=
[
P1,t

BATdis
,P2,t

BATdis
,…,PN,t

BATdis

]
(08 m)  

β = (βt,∀t ∈ ΩT) (08n)  

βt =
[
β1,t, β2,t,…, βN,t] (08o)  

3. Data clustering 

As mentioned previously, this paper is in aiming to develop an 
optimization approach for a real-case study in WA, Australia. In this 
regard, the project is developed according to a long-term historical data 
(demand in particluar) from several sites in a same area. Toward this 
end, an efficient clustering approach is developed to organize the his-
torical data to make the project more reflective. 

In this section, three different metrics are introduced to increase the 
clustering quality in terms of scattering within clusters, differentiation 
between clusters, and the number of clusters, which can be very 
important in some special cases. Some well-known indices (Arbelaitz 
et al., 2013) combine scattering within clusters and the separation be-
tween clusters into a single metric. As a result, multiple weighted-sum 
factors to change the priority of any metric cannot be applied. There-
fore, the metrics are split in order to enable their priorities to be adjusted 
through different weight factors. The proposed metrics are detailed in 
depth in the next section. 

3.1. A. Metrics 

The main metric (Mrt) for enhancing clustering quality is calculated 
by adding the normalized values of each discrete objective function with 
consideration of the weight factors. 

MinΘC(Mrt) =
∑Nob

k=1
ωkMrtk (09a)  

s.t.
∑

k
ωk = 1 (09b) 

In the above equations, ΘC is the decision-variables vector, which 

denotes the set of observations for cluster centriods. In the optimization 
problem, the variable vector will be found based on minimizing the 
metrics, where Nob and kth are the number of metrics and the weighting 
of kth metric (Mrtk). The weighting of the factors will depend on the 
decision-maker’s point of view. 

3.1.1. Scattering metric 
The scattering of observations in each cluster is represented by the 

following metric, Mrt1. Each observation’s Euclidean distance from the 
centroid of the assigned cluster is implemented. By minimizing the 
subsequent metric, the scattering rate will decrease. The scattering rate 
of observations within each cluster can be reduced by minimizing Mrt1. 

Mrt1 =
1

Ncltr

∑Ncltr

i=1
Si (10a)  

s.t.Si =
Si

Max∀j
(
Sj
) (10b)  

Si =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ɲi

∑Ɲi

n=1

⃦
⃦ai,n − ci

⃦
⃦

√
√
√
√ (10c) 

In this function, Ncltr and Ɲi are the number of clusters and obser-
vations in the ith cluster, respectively; ai,n and ci signify the nth obser-
vation in the ith cluster, respectively; Si and Si are the square mean of the 
Euclidean distance between each observation in the ith cluster and the 
centroid of the ith cluster and the normalized form of it, respectively; and 
the first objective function, Mrt1, is the mean of Si. 

3.1.2. Separation metric 
The separation of cluster centroids is indicated by the second metric. 

Euclidean distance is the main component of this metrics, which when 
minimized, will increase the separation rate of the clusters. 

Mrt2 =
1

Ncltr

∑Ncltr

i=1
M i (11a)  

Fig. 3. The flowchart detailing the process of data clustering using the modified Invasive Weed Optimization (IWO) algorithm.  
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s.t.M i = Max∀j,j∕=i
(
Di,j

)
(11b)  

Di,j =
Di,j

Max∀m,n;m∕=n
(
Dm,n

) (11c)  

Di,j =
1

⃦
⃦ci − cj

⃦
⃦

, ∀i, j (11d) 

For this equation, Di,j is the Euclidean distance reversal of the ith and 
the jth clusters; Di,j is obtained by dividing Di,j by the maximum Euclidean 
distance reversal through clusters to give the normalized value of Di,j; M i 

is the maximum value of Di,j for the ith and the jth clusters; and Mrt2 is 
the second metric obtained from the mean of M i. The quality of clus-
tering will be enhanced by increasing the separation between clusters 
through the minimization of this metrics. 

3.1.3. Number of clusters 
The normalized form of the number of clusters is given by the third 

mertic. This metric is essential in a given problem to reduce its 
complexity and enable decision-makers to identify the dominating 
cluster more easily. Conversely, Mrt1 tends to increase the number of 
clusters to reduce the scattering rate. In light of this, it is crucial to take 
this metric into account when solving this clustering problem. The 
normalized representation of the number of cluster is achieved using the 
fuzzy approach (Tran, 2004). The following is the defined metric’s 
mathematical definition: 

Mrt3 =
Ncltr − Nmin

cltr

Nmax
cltr − Nmin

cltr
(12a)  

s.t.Ncltr = Size(Unique(ΘC) ) (12b) 

where Nmax
cltr and Nmin

cltr denote the maximum and the minimum number 
of clusters, respectively. 

3.2. Optimization of the clustering 

Clustering is an optimization problem with specific objective func-
tions and decision variables, as previously mentioned. In terms of 
determining the centroid of each cluster, the optimal number of clusters, 
and clustering in line with a specific metric, k-means and traditional 
clustering algorithms have various drawbacks. Consequently, to identify 
the ideal number of clusters and the clusters’ centroids in order to 
optimize the stated metric, the well-known meta-heuristic optimization 
algorithm called invasive weed optimization (IWO) is used. This 
method’s superiority has been demonstrated in some engineering opti-
mization problems, including data mining and image processing (Cas-
tillo et al., 2018). A modified IWO technique is also applied to the 

Table 1 
The Clustering Results based on the Developed Framework for the Spring Group 
under the various Scenarios.  

Scenarios Weights Objective Functions Criterions 

w1 w2 w3 Ob1 Ob2 Ob3 DBI SI 

1 1 0 0 0.72 0.48 0.5 0.86 0.67 
2 0 1 0 0.75 0.31 1 1.14 0.46 
3 0 0 1 0.95 1 0 0.81 0.67 
4 0.7 0.3 0 0.79 0.37 0.75 1.00 0.58 
5 0.5 0.5 0 0.86 0.35 0.62 1.29 0.40 
6 0.3 0.7 0 0.83 0.33 0.87 1.35 0.42 
7 0.7 0 0.3 0.77 0.72 0.12 0.66 0.73 
8 0.5 0 0.5 0.81 0.48 0.25 0.88 0.64 
9 0.3 0 0.7 0.82 0.43 0.37 0.99 0.55 
10 0 0.7 0.3 0.83 0.33 0.62 1.08 0.47 
11 0 0.5 0.5 0.85 0.38 0.75 1.35 0.31 
12 0 0.3 0.7 0.87 0.58 0.25 1.36 0.32 
13 0.3 0.3 0.3 0.83 0.38 0.37 0.99 0.58  

Fig. 4. The outcomes derived from the clustering technique developed for the 
spring group. 

Table 2 
Proportion of every Cluster for Different Seasons.  

Hybrid Approach 

Clusters Spring Summer Autumn Winter H&W 
1 0.52 0.56 4.84 51.69 0.29 
2 94.27 37.22 1.08 47.83 0.29 
3 5.21 0.55 94.08 0.48 5.28 
4 - 61.67 - - 94.14  

Table 3 
The Clustering Results based on the Developed Framework for the Summer 
Group under the Various Scenarios.  

Scenarios Weights Objective Functions Criterions 

w1 w2 w3 Ob1 Ob2 Ob3 DBI SI 

1 1 0 0 0.68 0.28 0.87 0.89 0.67 
2 0 1 0 0.87 0.25 0.62 1.41 0.35 
3 0 0 1 0.75 1 0 0.73 0.63 
4 0.7 0.3 0 0.79 0.40 0.5 0.99 0.59 
5 0.5 0.5 0 0.79 0.37 0.62 1.13 0.49 
6 0.3 0.7 0 0.80 0.32 1 1.32 0.42 
7 0.7 0 0.3 0.79 0.35 0.37 0.87 0.63 
8 0.5 0 0.5 0.85 0.47 0.25 1.31 0.38 
9 0.3 0 0.7 0.94 0.63 0.12 0.92 0.58 
10 0 0.7 0.3 0.75 0.26 0.75 0.99 0.47 
11 0 0.5 0.5 0.76 0.40 0.37 0.84 0.64 
12 0 0.3 0.7 0.72 0.43 0.25 0.68 0.70 
13 0.3 0.3 0.3 0.69 0.478 0.5 0.81 0.69  

Table 4 
The Clustering Results based on the Developed Framework for the Autumn 
Group.  

Scenarios Weights Objective Functions Criterions 

w1 w2 w3 Ob1 Ob2 Ob3 DBI SI 

1 1 0 0 0.68 0.31 0.75 1.01  0.55 
2 0 1 0 0.70 0.21 0.87 0.97  0.56 
3 0 0 1 0.98 0.65 0.12 0.74  0.65 
4 0.7 0.3 0 0.80 0.55 0.12 0.66  0.65 
5 0.5 0.5 0 0.82 0.39 0.25 0.98  0.46 
6 0.3 0.7 0 0.83 0.34 0.37 0.77  0.59 
7 0.7 0 0.3 0.81 0.25 0.62 1.03  0.46 
8 0.5 0 0.5 0.81 0.47 0.25 0.64  0.71 
9 0.3 0 0.7 0.87 0.62 0.12 0.64  0.72 
10 0 0.7 0.3 0.77 0.32 0.37 0.67  0.59 
11 0 0.5 0.5 0.76 0.30 0.5 0.83  0.62 
12 0 0.3 0.7 0.75 0.28 0.62 0.82  0.60 
13 0.3 0.3 0.3 0.85 0.33 0.5 0.96  0.52  

A. Azizivahed et al.                                                                                                                                                                                                                             



Energy Reports 11 (2024) 2360–2373

2367

proposed problem. The modified IWO technique employs the wavelet 
mutation approach to prevent getting trapped in a local solution during 
the optimization process. The original and modified IWO techniques are 
described in the next sections. 

3.2.1. Original IWO algorithm 
IWO uses a population-based stochastic approach inspired by the 

behavior of the invasive weed colonies in agriculture (Mehrabian and 
Lucas, 2006). The initial population in this method is a generation 

placed randomly in the solution space like seeds in an agricultural field. 
The seeds are then ranked according to their fitness function to produce 
seeds again or for reproduction. 

Sp =

(
Smax − Smin

OFbest − OFworst

)

OFp + Smin (13) 

In this equation, Smax and Smin denote the predetermined maximum 
and minimum number of produced seeds, respectively; OFbest and OFworst 

are the fitness functions of the best and worst population, respectively; 
Sp and OFp signify the number of seeds generated by the pth seed and the 

Fig. 5. The findings obtained through the clustering method developed for the 
summer group. 

Fig. 6. The frequency distribution of each day within every cluster for the 
summer group. 

Fig. 7. The outcomes obtained from the clustering method developed for the 
Autumn group. 

Table 5 
The Clustering Results based On the Developed Framework for the Winter 
Group.  

Scenarios Weights Objective Functions Criterions 

w1 w2 w3 Ob1 Ob2 Ob3 DBI SI 

1 1 0 0 0.77 0.38 0.5 1.73  0.40 
2 0 1 0 0.88 0.44 0.37 1.47  0.41 
3 0 0 1 0.93 0.77 0.12 1.44  0.32 
4 0.7 0.3 0 0.88 0.62 0.37 1.54  0.37 
5 0.5 0.5 0 0.90 0.46 0.5 1.53  0.30 
6 0.3 0.7 0 0.92 0.43 0.62 1.58  0.19 
7 0.7 0 0.3 0.89 0.58 0.5 1.38  0.37 
8 0.5 0 0.5 0.89 0.62 0.25 1.41  0.37 
9 0.3 0 0.7 0.93 0.68 0.12 1.25  0.42 
10 0 0.7 0.3 0.98 0.56 0.25 1.65  0.34 
11 0 0.5 0.5 0.95 0.65 0.25 1.47  0.33 
12 0 0.3 0.7 0.89 0.74 0.12 1.45  0.35 
13 0.3 0.3 0.3 0.82 0.67 0.12 1.06  0.56  

Fig. 8. The results stemming from the clustering method developed for the 
winter group. 

Fig. 9. The frequency distribution of each day within each cluster within the 
winter group. 

A. Azizivahed et al.                                                                                                                                                                                                                             



Energy Reports 11 (2024) 2360–2373

2368

amount of fitness functions for the pth population. 
In the subsequent stages, seeds are produced at random in the search 

space according to the normal distribution function, with the mean 
located at the mother plant position (original seed) and the standard 
deviation decremented as follows; 

σitr = σfinal +

(
itrmax − itr

itrmax

)α(
σinitial − σfinal) (14)  

where σitr is the standard deviation at itrth iteration; itrmax is the 

maximum user-defined iteration; σfinal and σinitial represent the final and 
initial standard deviations, respectively; and α is the nonlinear modu-
lation index. 

Each of the original and new weeds are classified based on their 
fitness functions after reproduction. Weeds with poor fitness functions 
are eliminated and only a predefined number of them will remain for the 
next generation (iteration). These steps are repeated until the termina-
tion criterion is reached (i.e., the termination criterion is the maximum 
iteration). 

3.2.2. Wavelet mutation strategy 
A randomly chosen pthweed and its qthelement will go through 

wavelet mutation at the ith iteration within the sorted population. 

ΘCitr
p,q =

⎧
⎪⎨

⎪⎩

ΘCitr
p,q + σ

(
ΘCmax

q − ΘCitr
p,q

)
, if σ > 0

ΘCitr
p,q + σ

(
ΘCitr

p,q − ΘCmin
q

)
, if σ ≤ 0

(15) 

Here ΘCmax
q and ΘCmin

q respectively show the upper and lower bounds 
of for the qth component of the decision-variable vectors; σ is the mother 
wavelet and calculated by; 

σ = Ψ 0,h(r) =
1̅
̅̅
h

√ e−

(
r
h

)2

2 cos
(

5
(r

h

))
(16a)  

s.t.h = e

(

ln(hmax)− ln(hmax)×

(

1− itr
itrmax

)2 )

(16b) 

where r is a random integer produced from [− 2.5 h 2.5 h] and h and 
hmaxare the dilation parameter and its maximum limit (i.e., hmax=

10,000), respectively. In Bera et al (Bera et al., 2016)., more information 
regarding the wavelet mutation technique is given. Fig. 3 shows the 

Table 6 
Clustering Results of the Proposed Framework for the Holiday& Weekend 
Group.  

Scenarios Weights Objective Functions Criterions 

w1 w2 w3 Ob1 Ob2 Ob3 DBI SI 

1 1 0 0 0.63 0.39 0.12 1.09  0.52 
2 0 1 0 0.68 0.22 0.62 1.10  0.53 
3 0 0 1 0.67 1 0 0.78  0.41 
4 0.7 0.3 0 0.68 0.45 0.25 0.83  0.57 
5 0.5 0.5 0 0.78 0.40 0.25 0.89  0.59 
6 0.3 0.7 0 0.78 0.29 0.37 1.08  0.45 
7 0.7 0 0.3 0.66 0.37 0.37 0.69  0.68 
8 0.5 0 0.5 0.68 0.50 0.25 0.59  0.82 
9 0.3 0 0.7 0.86 0.79 0.12 1.23  0.42 
10 0 0.7 0.3 0.76 0.32 0.62 0.98  0.54 
11 0 0.5 0.5 0.72 0.40 0.37 0.73  0.71 
12 0 0.3 0.7 0.75 0.55 0.25 1.057  0.57 
13 0.3 0.3 0.3 0.63 0.31 0.25 0.87  0.55  

Fig. 10. The outcomes yielded by the clustering method developed for holidays 
and weekends. 

Fig. 11. The frequency distribution of each day within each cluster for the 
holiday and weekend group. 

Fig. 12. The Davies-Bouldin metric score for different cases.  

Fig. 13. The silhouette metric score for different cases.  
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structure of the suggested technique from solving the issue optimally. 

3.2.3. Validity criterion for comparison 
Two well-known matrices are employed to demonstrate the effi-

ciency of the cluster for making an accurate comparison among the 
outcomes produced from the suggested technique and the results ac-
quired from the standard k-means method. The Davies-Bouldin and 
silhouette indexes are the best metrics for indicating classification per-
formance, as discussed in (Arbelaitz et al., 2013), and are thus utilized 
for comparing in this study. Arbelaitz et al (Arbelaitz et al., 2013). 
provide details on these indicators as well as additional metrics. 

4. Results and discussion 

4.1. The assessment of the clustering 

The developed methodology is evaluated in this section using a 
genuine, typical load demand dataset of the WA facility. The data set 
covers three years of power use at a big local government’s Civic Centre 
with a 30-minute time interval. At first, the suggested data is divided 
into five categories depending on dates: spring, summer, autumn, 
winter, and holiday and weekend combined. The recommended tech-
nique is then executed independently for every seasonal subgroup. The 
greatest and lowest number of clusters equals ten and two, respectively. 
The developed framework is carried out on a core-i7 laptop with a 
2.8 GHz clock pulse and 16 GB of RAM by using the MATLAB software. 

Table 1 provides the findings for the spring subgroup for 13 possible 
situations (i.e., various weight ratios). In addition, the values of the 
Davies-Bouldin and Silhouette indices (DBI and SI) are generated for 
each scenario in order to demonstrate the accuracy of clustering under 
each scenario and to choose the most suitable option. These findings 
demonstrate that the quantity of each objective function varies in rela-
tion to the weightings. The best DBI and SI values are found in the 7th 
Scenario (w1=0.7, w2=0, and w3=0.3), which demonstrates that the 
dispersal measure does have the utmost ranking relative to the other 
metrics and the separation rate has the lowest priority. Furthermore, it 
was anticipated to contain a few clusters, and the majority of the ob-
servations would be anticipated to correspond to the identical cluster, 
which is supported by the clustering outcomes shown in Fig. 4. 

Additionally, the majority of the days - all but one, “25-Nov-2016,” 
belong to cluster two. All workdays of the week are represented by 
members of clusters two and three with roughly similar frequency. The 
percentage of every cluster in each group is displayed in Table 2. The 
table shows that the second category, which comprises more than 90% 
of the observations, is the dominating cluster. 

For the other season categories, we also have equivalent outcomes 
and the same analysis. The 12th scenario in which the weighting factors 
(w1-w3) are set to 0, 0.3, and 0.7, respectively, to provide the best score 
for both DBI and SI, per the summer group’s results in Table 3. In 
comparison to the number of clusters and the separation metric, which 
have higher priorities, the dispersion rate has the lowest priority. As a 
result, there are many clusters in the summer group, and the majority of 
the observations are associated with just a few clusters. In contrast, 
when w3= 0.7, the number of clusters experienced their highest priority 
in the 9th scenario which is the best one for the fall group in Table 4 
compared to the separation metric’s lowest priority (w2= 0) and the 
dispersion rate’s highest value (w1= 0.3). Since most of the observa-
tions would be anticipated to belong to the same cluster, it would be 
predicted that the autumn grouping had a limited range of clusters. 
According to Table 2, the final and second clusters that are represented 
in Fig. 5 contain about 62% and 37% of the observations in the summer 
group, correspondingly. Fig. 6 shows how often each day of the week 
occurs in every cluster. 

This chart shows that cluster 4 includes the bulk of “Thursdays” and 
“Fridays.” Conversely, the remaining days of the week were about 
equally distributed between clusters two and four. 

The last cluster is home to about 94% of the observations in the fall 
group. Fig. 7 shows the results. To elaborate, just two days, “6th and 
13th March of 2018″, are allocated to cluster two, the bulk of workdays 
are roughly equally distributed between clusters three and one, and 
Tuesday and Wednesday are representative of cluster one. 

The winter group’s results in Table 5 differ from those of the other 
categories. For the best case scenario (#13), the objective functions are 
prioritized equally, at 33% each. This indicates that the observations 
could be grouped into a few clusters with nearly equal proportions. 
Table 2 shows that 51.7% and 47.8% of observations are divided into 
two groups. Fig. 8 also depicts the clustering results of the ideal scenario 
in the winter season. 

The weekly frequency of workdays for the winter category is shown 
in Fig. 9. It is clear that cluster two has the most “Fridays” allocated to it. 
Contrarily, the majority of “Mondays” and “Tuesdays” fall within cluster 
1. The frequency of other days of the week is nearly alike in clusters one 
and two. Nearly identical to the fall grouping, the best case scenario 
(#8) for the holiday & weekend group in Table 6 has a greater priority 
(when weighting factors of objectives 1 and 3 equal to 0.5) in contrast to 
the separation metric which takes the least priority (weighting factor of 

Fig. 14. The network representing the multi-microgrids system in this study.  

Table 7 
Comparison of the costs of the proposed energy sharing mechanism with the 
traditional scheme.  

Case Collaborative Non-Collaborative 

MG1 Cost ($/year) 182,062 187,172 
MG2 Cost ($/year) 49,665.55 55,198.95 
MG3 Cost ($/year) 15,355.55 15,746.1 
MG4 Cost ($/year) 21,334.25 24,455 
MG5 Cost ($/year) 31,240.35 37,222.7 
MG6 Cost ($/year) 20,385.25 21,983.95 
MG7 Cost ($/year) 15,103.7 16,260.75 
MG8 Cost ($/year) 2620.7 3102.5 
MG9 Cost ($/year) 3587.95 3942 
Total MGs Cost ($/year) 341,355.3 365,084 
Energy loss (kWh/year) 1,321,406 1,321,556 
Energy from upstream 

grid (kWh/year) 
21,203,887 21,224,206  
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second objective function totalling 0). As a result, this group is likely to 
contain fewer clusters, and the majority of the observations correspond 
to the exact same cluster. Table 2 demonstrates that the last cluster may 
be allocated to more than 94% of the observations in this group. Fig. 10 
depicts the outcomes of the proposed scenario. Furthermore, as shown in  
Fig. 11, the frequency of the holidays and weekend grouping is the same 
as in the dominant cluster. 

The quantity of Davies-Bouldin and silhouette metrics for outcomes 
from the k-means technique, standard IWO, and all scenarios achieved 
by the proposed methodology are presented in Figs. 12 and 13, 
respectively, to demonstrate the superiority and efficacy of the frame-
work. These numbers clearly demonstrate the improved effectiveness of 
the suggested technique, since the quantities for the two measures for all 
scenarios generated by the suggested methodology were superior to 
those derived from the standard and IWO k-means. 

4.2. Assessing the Energy efficiency based on the results of clustering 

Load demand profiles over days offer helpful data associated with a 
facility that really can help with a study of its energy efficiency 
(Australian Government Department of Resources Energy and Tourism, 
2023). The daily load profile might change daily or seasonally based on 
the facility type, the main demands, and the operational circumstances. 
Finding out what device is using energy when may be done by 
combining the daily load profile with a list of demands in the facility. 
This could then help in identifying areas where energy efficiency im-
provements and cost or energy reductions are possible. 

Energy efficiency experts often examine the daily load demand over 
the period of a typical week for the four seasons of the year when 
researching buildings like commercial offices. This “average week” is 
typically selected as the season’s midway week, eliminating any obvious 
outlier weeks, including those with public holidays or sporadic, 

Fig. 15. The operational results of energy exchange between MG2 and the grid, as well as with other MGs, as determined by the proposed method, in comparison to 
MG2’s load profile and PV output. 

Fig. 16. The operational results of energy exchange with the grid and other MGs, as determined by the suggested method, in comparison to MG7’s PV generation and 
load profile. 
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significant events. However, there is no inherent guarantee that the 
week picked will accurately reflect the average daily electrical load 
pattern for that season. The clustering method employed in this study 
ensures that the most representative daily load profiles are included in 
the analysis by providing a quantitative assessment of the representa-
tiveness of various daily load profiles. The findings indicate that, 
consistent with conventional wisdom, summer and winter are best 
described by two different profiles that, in the case of winter, happen 
nearly in a similar percentage. Spring, autumn, weekends, and public 
holidays may all be depicted by one profile. 

The Civic Center facility analyzed in this paper has a load profile that 
is typical of most local government administration and civic center fa-
cilities. Due to the facility’s mostly administrative use during regular 
business hours on weekdays, the load profile substantially corresponds 
to that of most commercial office buildings. Nevertheless, the load 
profile is diverse because periodically Civic Center activities—like 
council conferences and conventions place outside of regular business 
hours or on weekends and holidays (citizenship ceremonies, council 
functions or hiring of the hall facilities by the public). 

The profile reveals that the heating, ventilation, air conditioning 
(HVAC) and lighting, which are turned on by the building’s manage-
ment system (BMS) at 4:30 AM and are turned off at 6:30 PM., are the 
main sources of energy use. The load increases from its overnight 
baseload rate in the morning to a significant quantity from 9:00 AM to 
10:00 AM, then drops down to its overnight rate starting at 6:00 PM 
when the BMS turns off the lights and HVAC. Considering that HVAC 
and lighting are the principal loads, these are the primary areas on 
which examination of efficiency improvements should be concentrated. 

In three seasons, specifically spring, autumn, and summer, there is a 
distinct spike from 4:30 to 5:30 AM, before the demand rises to its pri-
mary daylight level. This demonstrates that the BMS loses energy by 
operating when it is not necessary by not being designed to turn on the 
HVAC and lighting at the best time. Instead, during these months, it 
ought to be turned on a little later (nearer to 6:30AM), when it serves the 
primary load, which begins to increase around 8:30, and save about 2 h 
worth of electricity each weekday. 

4.3. The results of planning of multi-microgrid systems 

The example study includes nine MGs with installed solar and bat-
teries, three centralized loads and three dispersed loads sites or nodes, 
each of which is situated in the centre of the grid. As seen in Fig. 14, all 
nodes are spatially dispersed over various regions. PV systems are 
modelled to have capacities of 100, 150, 96, 255, 13, 4.5, 94, 40, and 12 
per kW for MG1 to MG9, respectively. Batteries for MG1 to MG9 have 
respectively the following capacities (kWh): 0, 57, 49, 58, 0.5, 1.5, 34, 
12, and 9. Additionally, the load profiles of each MG and PV generation, 
which is dependent on solar radiation, have been grouped seasonally 
throughout a year as discussed in previous sections. The developed 
energy-sharing framework is implemented on the test case study 
(Fig. 14) under the following experiments to have a comprehensive 
comparison. 

Scenario1: a cooperative/colaborative of MGs, which means MGs 
have active participation with each other, despite the communication 
with the grid. 

Scenario 2: noncooperation/non-collaboration among MGs, mean-
ing that there is no collaboration among MGs. In more detail, MGs 
merely interact with the grid by selling the excess power and purchasing 
the shortage of the power from the grid. 

The findings of both mentioned scenarios are shown in Table 7. This 
table helps to easily compare the benefits of each method. Table 7 shows 
that the cost of each MGs in scenario 1, the cooperative mechanism, is 
less than the cost of the corresponding MGs with the non-collaborative 
mechanism. To illustrate that, the cost of MG2 ($/year) is 49,665.55 
and 55,198.95 for collaborative and non-collaborative modes, respec-
tively. In terms of the total cost ($/year), collaborative and non- 

collaborative are 341,355.3 and 365,084, respectively. From these 
comparisons, it can be seen that more cost reduction is obtained if the 
MGs collaborate with each other. This development in the case study 
demonstrates that there could be business potential if all local govern-
ments in Western Australia adopt the suggested plan over the time 
frame. Future funding to expand the use of renewable energy sources in 
local government buildings will also have a positive impact. 

MG2 and MG7 have been chosen as illustrations to show the specifics 
of energy exchange amongst MGs. Figs. 15 and 16 depict the related 
demand and PV curves, their energy exchanges with the grid and other 
MGs, as well as the battery’s state of charge. As can be seen, these two 
MGs function in various circumstances. For instance, MG2’s PV pro-
duction is lower than its demand, but MG7’s PV production is more than 
its demand. MG2’s demand also dramatically decreases during the 
holidays and weekends, although MG7’s load is comparable to that of 
other clusters. 

The outcomes vary for each MG as a result of these differences. In 
Fig. 15, MG2 purchases the electricity from other MGs in addition to 
deploying its own PV production to fulfill the demand. There remains a 
deficit, but it is being addressed by importing energy from the grid. The 
holiday and weekend cluster, meanwhile, is in a diverse set of circum-
stances because it can fulfill its demand and transfer any excess power to 
other MGs that require it (this cluster has negative values). In other 
words, when an MG sells its excess power to other MGs, the cost imposed 
on the receiving MGs is determined based on the levelized cost of energy 
(LCOE), and the network charge involved has a fixed daily component in 
addition to a variable one depending on the amount of energy 
exchanged. MG7 also uses its own PV production throughout the day, 
thus there is no need to import electricity from the grid, as shown in 
Fig. 16. The fact that MG7 cannot participate in energy sharing with 
other MGs in the fall and winter, when PV output declines, is also an 
intriguing observation. 

5. Conclusion 

In order to identify possible energy efficiency improvements, the 
power consumption characteristics of a facility can be successfully 
analysed through the clustering of load profiles. For long-term energy 
planning, realistic load profiles are also essential. The multi-dimensional 
approach of clustering that was devised and assessed in this work ac-
counts for the dispersion within a cluster, the distance between clusters, 
and the total number of clusters. The clustering optimisation challenge 
has been addressed by developing and evaluating a novel hybrid tech-
nique that combines IWO and wavelet mutation algorithms. Three 
years’ worth of half-hourly load data from a civic centre run by the local 
government were subjected to the clustering method. Clustered load 
profiles were created and analysed for every season, as well as for 
weekends and vacations. The results of the comparison of the novel 
clustering approach with the original IWO and well-known k-means 
clustering strategy demonstrate the superiority of the proposed meth-
odology. By examining the clustered load profiles, an energy efficiency 
analysis of the local government facility was carried out. The analysis 
results demonstrate the effectiveness of the clustering strategy to help 
seize energy efficiency opportunities, such as effectively clustering load 
profiles with lower loads. 

Additionally, a linear optimization approach for power sharing has 
been presented, allowing several MGs to trade energy with one another 
and/or the main network. The approach aids an organization that owns 
multiple MGs to efficiently trade and exchange electricity between its 
MGs and the main grid as necessary. The model solves the issue of when 
to trade with the network (both for the purchase and sale of energy), 
considering market pricing, and when and how much to trade with other 
MGs, considering the fee for network utilization, network charge, and 
loss. This optimization framework was applied and evaluated on a case 
study in WA consisting of a group of dispersed MGs with PV and energy 
storage systems controlled by a local (municipal) government. The 
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outcomes from the case study demonstrate that the operation costs are 
cheaper in the cooperative situation than in the situation when each MG 
interacts with the grid separately. Total MGs cost ($/year) for collabo-
rative and non-collaborative conditions were 341,355 and 365,084, 
respectively. Similarly, the energy loss (kWh/year) associated with 
collaborative situations is 1,321,406, while it is 1,321,556 for the non- 
collaborative circumstance. These findings present a strong case for 
major organizations in WA to behave as retailers and include electricity 
trading among MGs as part of their energy management strategy. There 
is no doubt that each work has some advantages and limitations. Despite 
the advantages which have been discussed above, the limitation of this 
work would be associated with the load profile clustering. In order to 
improve the accuracy of operational planning, it is suggested that at 
least once a year, a new clustering is conducted to capture realistic 
patterns and changes of the load. This is not a very challenging task as 
the clustering, proposed in this paper, is run just once before handling 
planning optimization approach. For future work, the concept of a de-
mand response program would be another strategy that could be inte-
grated to increase the flexibility of the model. 
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