
Energy and AI 16 (2024) 100307

A
2

•

•

•

•

A

K
C
D
E
L
P

h
R

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Secure and efficient prediction of electric vehicle charging demand using
𝛼2-LSTM and AES-128 cryptography
Manish Bharat a,b, Ritesh Dash b, K. Jyotheeswara Reddy b, A.S.R. Murty a, Dhanamjayulu C. c,
S.M. Muyeen d,∗

a Department of Electrical and Electronics Engineering, Visvesvaraya Technological University, Belgaum, India
b School of Electrical and Electronics Engineering, REVA University, Bangalore, India
c School of Electrical Engineering, Vellore Institute of Technology, Vellore, India
d Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar

H I G H L I G H T S

A novel deep neural network based on
𝛼2-LSTM for predicting EV charging de-
mand at a 15-minute time resolution is
proposed.
The AES-128 for quantizing the sta-
tion and ensuring secure communication
with the user is presented.
Proposed algorithm achieves a 9.2% re-
duction in both the Root Mean Square
Error (RMSE) and the mean absolute
error.
The primary objective of this paper is to
demonstrate that a large window size of
data can be used without compromising
efficiency.
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A B S T R A C T

In recent years, there has been a significant surge in demand for electric vehicles (EVs), necessitating accurate
prediction of EV charging requirements. This prediction plays a crucial role in evaluating its impact on the
power grid, encompassing power management and peak demand management. In this paper, a novel deep
neural network based on 𝛼2 -LSTM is proposed to predict the demand for charging from electric vehicles at a 15-
minute time resolution. Additionally, we employ AES-128 for station quantization and secure communication
with users. Our proposed algorithm achieves a 9.2% reduction in both the Root Mean Square Error (RMSE) and
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the mean absolute error compared to LSTM, along with a 13.01% increase in demand accuracy. We present
a 12-month prediction of EV charging demand at charging stations, accompanied by an effective comparative
analysis of Mean Absolute Percentage Error (MAPE) and Mean Percentage Error (MPE) over the last five years
using our proposed model. The prediction analysis has been conducted using Python programming.
1. Introduction

The advancement in battery management technology has increased
the demand for the sustainable development of Electric Vehicles (EVs)
[1,2]. Government policies for clean energy have further contributed to
the rise in demand for EVs. Research shows that more than 3 million
electric vehicles were sold globally in 2020, with more than 3.8 million
sold in 2021, indicating a significant demand for electrical power in the
near future. With the increase in the demand for electric vehicles, the
demand for charging stations also increases. The International Energy
Agency estimates that only 8% of public EV charging stations are
available for the total number of EVs sold. The government has already
taken steps to install and increase the number of charging stations in
both AC and DC forms by the end of 2022.

However, most EV owners face the problem of charging time.
According to estimates, the charging time for EVs is approximately 5 h
for a 7.2 kW charging point. A full charge can only take the driver
to a distance of 300–400 km, which can be inconvenient for long trips.
This requires proper planning at the charging station, which depends on
the demand at that station. Day-ahead forecasting of charging station
demand can easily mitigate this issue.

Mariz B. Anias et al. [3] investigated demand forecasting using big
data analysis. They used traffic and weather data as input parameters
for a real-world charging demand forecasting model. Case studies were
considered for the forecasting model to predict demand for both slow
and fast charging stations. The features taken into account for the
analysis were the start charging time and the state of charge of the
battery (SoC). The proposed model could be more suitable for weekdays
and weekends.

Ghanbanzadeh et al. [4] proposed a hybrid particle swarm opti-
mization and an ant colony optimization approach to evaluate the
demand for charging stations. They conducted a sensitivity analysis on
the reliability level of vehicle-to-grid (V2G) systems and addressed the
unit commitment problem related to the charging demand patterns of
EVs. An important observation from their research is that operating
costs increase when compared to reliability limits.

Khayati and Kang [5] applied a household activity pattern approach
to optimize the prediction of EV charging demand. They tested their
algorithm using two patterns based on the California-state-wide travel
survey, developing a sequential activity allocation method and insert-
ing heuristics to solve the problem. Lam and Yin [6], on the other hand,
used an activity-time utility theory model to address the inequality
problem. They tested their algorithm using expanded heuristics in terms
of a space–time network.

Mujidpoun et al. [7] investigated four different algorithms to predict
the charging demand of EVs:EVs: Modified Pattern Sequence Forecast-
ing (MPSF), Support Vector Regression (SVR), Random Forest (RF), and
Time Weighted Dot Product-Based Nearest Neighbor (TWDP-NN). To
study the impact of the EV distribution grid, they used a stochastic
model to determine a realistic driving profile for each agent. In con-
trast, Daina et al. [8] applied a random utility model to integrate an
activity-based demand model. They used two data sets to determine
charging choices, including the amount of energy, charging time, and
charging cost of the EV. Additionally, the model captures the behavioral
nuances of charging.

Neaimeh et al. [9] investigated a probabilistic approach to deter-
mine the actual EV charging profile and the demand for meters on
a distribution network. They studied the spatial and temporal diver-
sity of EV charging demand, which enabled demand-side management
2

and reduced planning uncertainties in stochastic models. In contrast,
Nouninejad et al. [10] proposed an activity-based equilibrium schedul-
ing algorithm to find a unique solution for a convergence optimization
problem. They claimed that their algorithm could increase the welfare
of the social model by 20% compared to V2G. Sandstrom and Bind-
ing [11] presented a semi-Markov chain based on a ‘‘trip prediction
model’’. This model results in a one-to-one charging architecture that
ultimately avoids congestion from the distribution grid.

Tan et al. [12] applied distributed optimization to reduce elec-
tricity bills and flatten demand response. Xydas et al. [13] proposed
a fuzzy model and a data mining model to predict the demand for
electric vehicle charging in various geographical regions. Yagetekin
and Uzunoglu [14] developed a smart charging management algorithm
strategy to avoid overloading transformers, which in turn reduces
charging costs and demand for electric vehicles charging.

Luo et al. [15] used the Monte Carlo technique in their research
paper to forecast EV charging demand in the long term. They tested
their algorithm on different types of electric vehicles, such as electric
buses and taxis, for the years 2015, 2020, and 2030. By simulating
the load demand at charging stations, they identified the need for a
proper demand profile for peak and off-peak vehicles. In a similar vein,
Xing et al. [16] relied on ride-hailing trip data to predict EV charging
demand at charging stations. They took into account both driving and
charging characteristics to create their model.

Li and Zhang et al. [17] used a probabilistic power flow model to
simulate the energy pattern of electric vehicles over a certain period of
time. They also applied queuing theory to estimate the overall demand
for EV charging facilities. Similarly, Bae and Kwasinski [18] used fluid
dynamics to evaluate charging demand patterns at highway charging
stations, also utilizing queuing theory. They studied simulation results
to help vehicle owners optimize their planning for charging infras-
tructure. The model captures both spatial and temporal dynamics of
charging demand.

Louie [19] and Buzoa et al. [20] investigated the performance of a
seasonal autoregressive integrated moving average model in predicting
the demand for EV charging stations in San Diego, California, and
the Netherlands, respectively. They demonstrated that the geographical
location and characteristics of EV charging stations are crucial factors
to accurately predict demand.

Compared to the statistical way of forecasting EV charging de-
mand for a charging station, demand forecasting enabled by Machine
Learning (ML) is more accurate. ML algorithms can be used for both
short-term and long-term forecasting. Therefore, many researchers have
investigated the application of ML, specifically Support Vector Machine
(SVM), Decision Tree, and K-Nearest Neighbor (KNN), in predicting
charging demand. However, one drawback associated with this tech-
nique is that it lacks the ability to simulate the temporal correlation
between data, which ultimately leads to inaccurate predictions.

Zhu et al. [21] applied deep learning techniques to evaluate short-
term predictions of time series data. They used recurrent neural net-
works (RNN), long-short-term memory (LSTM) and gated recurrent
units (GRUs) to forecast demand from one hour to 24 h ahead. The
authors found that GRU and LSTM are effective for fixed time steps,
but not for multistep predictions. Sutskever et al. [22] developed a
Seq2seq model that takes the output of the first model as input to
the second model to predict the result. Meanwhile, Wang et al. [23]
designed a SeqST-GN multi-step algorithm to predict the performance
of EV charging demand at a charging station.

Xi Chen et al. [24] introduced a two-fold approach to enhance elec-
tric vehicle (EV) usage and promote renewable energy (RE) utilization.
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Fig. 1. Single lane traffic flow diagram.
Fig. 2. Function of number of cars at charging station.
Fig. 3. Convex symmetric plane analysis.

First, they developed a prioritization ranking algorithm for EV drivers
based on their driving and charging patterns. Second, they proposed a
secure, anonymous, and decentralized blockchain-based EV incentive
system involving utilities, EV drivers, charging service providers, and
RE providers. This system guides EV users to charge during periods of
higher RE generation.

In [25], Xi Chen et al. discussed the modeling of the EV charging
network as a cyber–physical system integrating transportation networks
and smart grids. They introduced an EV charging station recommenda-
tion algorithm and emphasized the importance of deploying a charging
scheduling algorithm. This approach transforms EV charging from bur-
dening power grids to serving as a load-balancing tool, facilitating
energy transfer within unbalanced distribution grids.
3

Tianyang et al. [26] presented a stochastic model depicting interac-
tions between charging stations /Battery Swapping Stations (BSS) and
taxi/bus fleets. The model incorporates realistic user behavior through
various stochastic processes and accounts for the dynamic effects of
road congestion.

The previous discussion showed that predicting EV charging de-
mand can be achieved either through statistical modeling or by using
ML algorithms. However, regardless of the method, data remains the
crucial parameter. Additionally, the discussion identified connection
time and battery State of Charge (SoC) as two important parameters
that play a vital role in forecasting demand for EV charging stations.
However, none of the papers discussed the integrity and authenticity of
data before forecasting or predicting demand for EV charging stations.
A recurrent neural network such as Long Short Term Memory (LSTM)
can be used to create a sequence model on past data before processing
the prediction. The sequence of the model helps to create labeled
data for an unbalanced time series model. The labeled data uses two
activation functions in the LSTM module to forecast the data. The
backpropagation model used in the training of data leads to fading
during subsequent iteration. The provision must be given for time
series data to preserve the memory after each iteration. This can be
achieved by providing some encrypted sequence to the data, which
can be validated at the time of handshaking. This paper attempts to
incorporate cryptanalysis in evaluating the prediction of EV charging
demand at a specific charging station.

Based on the literature survey on the present state of art model, the
following key contribution has been proposed in the present research
article.

• The paper addresses the need for accurate prediction of EV charg-
ing requirements due to the increasing demand for electric ve-
hicles. This prediction is crucial for assessing the impact on
the power grid, including power management and peak demand
management.

• A novel deep neural network based on 𝛼2-LSTM is proposed for
predicting EV charging demand at a 15-min time resolution.

• AES-128 encryption is employed for quantizing the station and
providing secure communication to the user. This ensures that
the communication between the EV charging station and the user

remains protected and confidential.
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Fig. 4. 3-dimension surface view of charging density demand under free flow condition
for (a) 𝜌 = 0.30 (b) 𝜌 = 0.75 and (c) 𝜌 = 0.98.

• The proposed algorithm outperforms LSTM, achieving a 9.2% re-
duction in RMSE and mean absolute error, and a 13.01% increase
in demand accuracy.

• The paper aims to demonstrate that a large window size of data
can be used without compromising efficiency and error mini-
mization while utilizing cryptography for accurate and secure
prediction of EV charging demand.

2. Problem formulation

The demand for EV charging at a charging station depends largely
on the traffic flow on the road. This demand, in turn, is influenced by
the road’s active structure. To analyze charging demand, it is necessary
to solve the traffic flow problem. A macroscopic traffic model that
considers the energy state of EVs has been developed to evaluate the
demand for charging at a station.
4

Fig. 5. 3-dimension surface view of charging density demand under Congested Flow
Condition for (a) 𝜌 = 0.10 (b) 𝜌 = 0.20 and (c) 𝜌 = 0.30.

To evaluate the multiphase aspects of traffic flow, the total energy of
the system must be considered. This is because the system’s dynamic
equation can be represented by a number of algebraic variables that
contribute to its overall dynamics. Let the total energy of the system
be

𝐸𝑘 = 1
2
𝜌𝑣2 (1)

In Eq. (1), 𝐸𝑘 represents the kinetic energy present in the system,
𝜌 is the density and 𝑉 represents the speed of the system. The total
energy density can now be expressed as

𝐸𝑘 = 𝐸𝑘 + 𝜖(𝜌) = 1
2
𝜌𝑣2 + 𝑐2

2𝜌𝑐
(𝜌 − 𝜌𝑐 )2 (2)

In Eq. (2), 𝜌𝑐 represents the critical density of the system. Again from
Eq. (2), three different cases can be obtained

• Free Flow (𝜌 ≤ 𝜌𝑐 )
• Congested Flow (𝜌𝑐 ≤ 𝜌𝑚𝑎𝑥)
• Saturated Flow (𝜌 = 𝜌𝑚𝑎𝑥)

Assuming that the system is congested, Fig. 1 shows the Single lane
traffic flow diagram. Let 𝑃̇𝑖(𝑡) be the position of 𝑖th car and 𝑉𝑖(𝑡) be the
velocity of 𝑖th car. The acceleration or deceleration of a car depends on
two parameters: the velocity of the car in front of it and the distance
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Fig. 6. 3-dimension surface view of charging density demand under Congested Flow
Condition for (a) 𝜌 = 0.40, (b) 𝜌 = 0.50 and (c) 𝜌 = 0.60.

between them. As a result, the state equation becomes:
{

𝑃̇𝑖(𝑡) = 𝑉𝑖
𝑉̇𝑖 = 𝑎(𝑉𝑖, 𝑉𝑖−1, 𝑃𝑖−1 − 𝑃𝑖)

(3)

Again, from Eq. (2) the velocity can be written as

𝑉𝑖 = 𝐸𝑇 − 𝑐2

2𝜌𝑐
(𝜌 − 𝜌𝑐 )2 (4)

Putting Eq. (4) in Eq. (3)

𝑉̇𝑖 = 𝑎
[

1 −
(𝐸𝑇 − 𝐶2

2𝜌𝑐
(𝜌 − 𝜌𝑐 )2

𝑉

)

𝛿
]

− 𝑎
[

𝑠∗(𝑉𝑖 − 𝛿𝑉𝑖)2

𝑠𝑖

]

(5)

Eq. (5) represents the derived velocity of the car in terms of its
internal energy and the space between the car ahead of it as a function
of the density parameter. Let the function ‘‘F’’ represent the statistical
distribution function as a composite parameter of the position and
velocity of the car.

𝐹 = 𝑓 (𝑡, 𝑝, 𝑣) (6)

so the total energy density becomes

𝜌(𝑡, 𝑝) =
∞
(𝑡, 𝑝, 𝑣)𝑑𝑣 (7)
5

∫0
Fig. 7. 3-dimension surface view of charging density demand under Congested Flow
Condition for (a) 𝜌 = 0.70, (b) 𝜌 = 0.80 and (c) 𝜌 = 0.90.

Fig. 8. Quadratic plane cross-section analysis for convergence evaluation.

and that of average velocity becomes

𝑉 (𝑡, 𝑝) = 1 ∞
(𝑡, 𝑝, 𝑣)𝑑𝑣 (8)
𝑠(𝑡, 𝑝) ∫0
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Fig. 9. NNAR Model for EV charging demand prediction.
Fig. 10. Extreme Learn Algorithm architecture for Demand Prediction.
The 1st differential solution for Eq. (8) becomes

𝑑𝑓
𝑑𝑡

+ 𝑣
𝑑𝑓
𝑑𝑝

+ 𝑎(𝑡, 𝑝)
𝑑𝑓
𝑑𝑣

= 𝑄[𝑓, 𝜌] (9)

The state equation for Eq. (9) can be written as

{

𝜌 + (𝜌𝑉 )𝑝 = 0
(10)
6

𝑉𝑡 + 𝑉 𝑉𝑝 = 𝑎(𝜌, 𝑣, 𝜌𝑝)
or

⎧

⎪

⎨

⎪

⎩

𝜌 + (𝜌𝑉 )𝑝 = 0

𝑉𝑡 + 𝑉 𝑉𝑝 =
1
𝜁 (𝑉𝜌 − 𝑉 ) − 𝑃̇𝜌

𝜌 𝜌𝑝
(11)

Eq. (11) can be further reduced to,

⎧

⎪

⎨

⎪

𝜌 + (𝜌𝑉 )𝑝 = 0

𝑉𝑡 + 𝑉 𝑉𝑝 +
𝑃̇𝜌
𝜌 𝜌𝑝 =

1
𝜁 (𝑉 (𝜌) − 𝑉 )

(12)
⎩
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Fig. 11. Extreme Learning Algorithm Flow Chart with Back Casting.
Fig. 12. LSTM Network architecture.
or

[

𝜌𝑡
𝑉

]

+

[

𝑉 𝜌
𝑃̇𝜌

]

[

𝜌𝑝
𝑉

]

=
[

0
0

]

(13)
7

𝑡 𝜌 𝑉 𝑝
on applying convective derivative to Eq. (13), it reduces to

[

𝜌𝑡
]

+
[

𝑉 𝜌
] [

𝜌𝑝
]

=
[

0
]

(14)

𝑉𝑡 0 𝑉 − 𝑃𝜌̇(𝑓 ) 𝑉𝑝 0
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Fig. 13. Monthly prediction of EV demand for actual and predicted based on NNAR
(a) Jan 2022 (b) Feb 2022 and (c) Mar 2022.

Eq. (14) shows that a huge demand for charging may occur if
all drivers start at the same time. Therefore, an optimal solution is
required. Let 𝑈̄ (𝑡) represents the departure time for minimizing the cost
i.e.

𝑢(𝑡, 𝑝) = 𝜌(𝑡, 𝑝).𝑉 [𝜌(𝑡, 𝑝)] (15)

against
{

𝜌 + [𝜌𝑉 (𝜌)]𝑝 = 0
̄ (16)
8

𝜌(𝑡, 0) + 𝑉 (𝜌(𝑡, 0)) = 𝑈 (𝑡)
Fig. 14. Monthly prediction of EV demand for actual and predicted based on ELA (a)
Jan, 2022 (b) Feb, 2022 and (c) Mar, 2022.

Therefore, the optimal departure rate 𝑈̄ (𝑡) with reference to Fig. 2
becomes as a function of number of cars i.e.,

∫ 𝑈̄ (𝑡) = 𝑘 (17)

Convex symmetric plane analysis for Eq. (17) is shown in Fig. 3. It
can be observed that instead of optimizing the entire convex surface,
optimization can be done for a small section as shown inside the
surface.
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Fig. 15. LSTM Box plot for 12 month of prediction.
Fig. 16. ELM time lag plot for 7 time based components.
2.1. Free flow condition

Here, it is assumed that the combustion of internal energy is negli-
gible. The entire energy of the system depends on the available kinetic
energy. Therefore Eq. (11) becomes
{

𝜌𝑡 + (𝜌𝑉 )𝑝 = 0
𝑉𝑡 + 𝑉 𝑉𝑝+ = 1

𝜁 [𝑉 (𝜌) − 𝑉 ]
(18)

or

⎧

⎪

⎨

⎪

𝜌 + (𝜌𝑉 )𝑝 = 0

𝑉𝑡 + 𝑉
𝑑𝑣𝑝 = 1 [𝑉 (𝜌) − 𝑉 ]

(19)
9

⎩

𝑑𝑡 𝜁
or
{

𝑑𝑡𝜌 + 𝑑𝑝(𝜌𝑉 ) = 0
𝑉 = 𝑉𝑚𝑎𝑥 −

𝜌
𝜌𝑐
(𝑉𝑚𝑎𝑥 − 𝑉𝑐 )

(20)

Again, from Eq. (20), the minimization function becomes

𝑢(𝑡, 𝑝) = 𝜌(𝑡, 𝑝).𝑉𝑚𝑎𝑥[𝜌(𝑡, 𝑝)] (21)

against
{

𝜌𝑡 + [𝜌𝑣(𝜌)]𝑝 = 0
𝜌(𝑡, 0) + 𝑉 [ 𝜌 (𝑡, 0)] = 𝑈̄ (𝑡)

(22)

𝑚𝑎𝑥 𝜌𝑐 𝑃
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Fig. 17. LSTM time lag plot for 3 time-based components.
Fig. 18. LSTM auto-correlation for actual vs predicted.
Fig. 4 presents the 3-dimensional surface view for the free flow
condition under three different values of charging density demand:
𝜌 = 0.30, 0.75 and 0.98.

2.2. Congested flow condition

Let the critical density become 𝜌𝑐 . Therefore Eq. (11) can be written
as
⎧

⎪

⎨

⎪

⎩

𝜌𝑡 + (𝜌𝑐𝑉 )𝑝 = 0
𝑉𝑡 + 𝑉𝑐𝑉𝑃 − 1

𝜁 (𝑉 (𝜌𝑐 ) − 𝑉 ) + 𝑃̇ (𝜌𝑐 )
𝜌𝑐

𝜌𝑝 = 0
(23)

The state Eq. (23) can be written as
[

𝜌𝑡
𝑉𝑡

]

+

[

𝑉𝑐𝑉𝑝 𝜌𝑐
1
𝜁 (𝑉 (𝜌𝑐 ) − 𝑉 ) 𝑉

]

[

𝜌𝑐
𝑉𝑐

]

=
[

0
0

]

(24)

The 3-dimensional surface view for the free flow condition un-
der Congested Flow conditions for different values of charging den-
sity demand starting from 10% to 90% is presented in Figs. 5–7
respectively.

3. Solution methodology

The free flow condition and congested flow condition show that the
minimization problem is a function of time, P, and density 𝜌. Again
10
it is also seen that the congestion increases in an exponential manner
in the epigraph (M) as a function of 𝑃 ∶ 𝑅𝑛 → [−∞,∞). If this is the
case then a situation will arise where M will co-inside with 𝑀̄1 with
a minimum common value around 𝑃 (0). Mathematically for free flow
condition Eq. (21) can be written as

𝑢(𝑡, 𝑝) = 𝑃 (0) (25)

Therefore the reciprocally duality function becomes

𝑠(𝜆) = inf
(𝑉𝑐 ,𝑉𝑝)∈𝑒𝑝𝑖(𝛼2)

[𝜌 + 𝜌
′𝜌𝑐 ] (26)

or

𝑠(𝜆) = inf
(𝑉𝑐 ,𝑉𝑝)|𝑣≤𝑒𝑝𝑖(𝛼2)

[𝜌 + 𝜌
′𝜌𝑐 ] (27)

or

𝑠(𝜆) = inf
𝑉 ≤𝑅𝑚

[𝜌(𝑣) + 𝜌
′𝜌𝑐 ] (28)

Hence, 𝑆(𝜆) = −𝑆∗(−𝜆), so

𝑠∗(𝜆) = sup
𝜆≤𝑅𝑚

[𝜌
′𝜌𝑐−𝜌(𝑣)] (29)

Eq. (29) behaves the conjugate of Eq. (28). Again modifying Eq. (29)

𝑆∗ = sup[0. − (−𝜆) − 𝑆∗(−𝜆)] = 𝑆∗𝛼2 (0) (30)

𝜆𝑅𝑚
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Fig. 19. 12 Months prediction of EV charging demand on charging station for the year 2022 based on 𝛼2 −𝐿𝑆𝑇𝑀 (a) Jan (b) Feb (C) Mar (d) Apr (e) May (f) June (g) July (h)
Aug (i) Sept. (j) Oct. (k) Nov. (l) Dec.
Eq. (30) shows that there exists a convex plane where it is a double
conjugate of s or there exists an 𝛼2 plane. Therefore,

𝑃 (𝑣) = inf
𝜌𝑅

𝑉𝑐 (𝜌) (31)

where,

𝑉𝑐 (𝜌) = sup
𝜆𝑅𝑚

[𝑆(𝜌, 𝜌𝑐 ) − 𝜌𝑐 ] (32)

on modifying Eq. (31) to a non constant function 𝑓 ∶ −𝐹 where
existing on inverse function 𝑓−1. Both f and 𝑓−1 are monotone on
s-plane, Fig. 8 i.e.

1
1

𝑉𝑐𝜌𝑥
+ 1

𝑉𝑐𝜌𝑥

= 𝐹 (𝑢(𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦), 𝑉 (𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦)) (33)

or

1
1

𝑉𝑐𝜌𝑥
+ 1

𝑉𝑐𝜌𝑥

= 𝑓−1 𝐹 (𝑢(𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦), 𝑉 (𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦))
2

(34)

or

1
1

𝑉𝑐𝜌𝑥
+ 1

𝑉𝑐𝜌𝑥

≤
𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦

2

≤ 𝑓−1 𝐹 (𝑢(𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦), 𝑉 (𝑉𝑐𝜌𝑥 + 𝑉𝑝𝜌𝑦))
(35)
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2

or in general

1
∑

( 𝑣𝑖𝜌𝑖
)
≤ 𝑓−1

(

∑

𝑣𝑖𝑓 (𝜌𝑖)
)

≤ 𝑓−1
(

∑ 𝑉𝑖𝜌𝑖𝑓−1(𝜌𝑖)
∑

( 𝑣𝑖𝜌𝑖
)

) (36)

In Eq. (34), both 𝑉𝑐 and 𝑉𝑝 are increasing variables based on traffic
strategies. 𝜌𝑥 and 𝜌𝑦 is a subset of 𝑉 and 𝑉𝑐 and 𝑉𝑝 ≥ 0 such that
𝑉 (𝛼2)
𝑐 + 𝑉 (𝛼2)

𝑝 = 1, then Eq. (36) can be reduced into

ℎ(𝑣𝑐𝜌𝑥 + 𝑣𝑝𝜌𝑦) = 𝐹 (𝑢(𝑣𝑐𝜌𝑥 + 𝑣𝑝𝜌𝑦), 𝑣(𝑣𝑐𝜌𝑥 + 𝑣𝑝𝜌𝑦))

= 𝑉𝑐ℎ(𝜌𝑥) + 𝑉𝑝ℎ(𝜌𝑦)
(37)

Again replacing 𝜌𝑥 ← 𝜌 and 𝜌𝑦 ← 𝜌𝑐 , Eq. (37) becomes

ℎ(𝑣𝑐𝜌 + 𝑣𝑝𝜌𝑐 ) = 𝑉𝑐ℎ(𝜌) + 𝑉𝑝ℎ(𝜌𝑐 ) (38)

and that of minimization function becomes
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

(𝑇 , 𝛼2) ∈ 𝑅𝑛 𝑉 𝑠
𝑐 𝑉𝑝 +

𝑉 𝑠
𝑐 𝐹 (𝑠(𝜌, 𝜌𝑐 )) + 𝑉𝑝
𝑉𝑝(𝑓−1(𝜌𝛼))

(39)

s.t 𝑠(𝑠, 𝜌𝑐 ) < 𝑠−1(𝑠, 𝑠𝑐 )
𝑖𝑛𝑓

𝑣𝑝 ∈ 𝑅𝑛
∑ 𝑣𝑖

𝜌
=
∑ 𝑉𝑖𝜌𝑖𝑓−1(𝜌𝑖)

∑

( 𝑣𝑖 )
(40)
𝑖 𝜌𝑜
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Fig. 20.
Eq. (39) represents the desired minimization form.

4. Bench marking model

In this research work, the proposed method has been compared and
analyzed with three benchmarking models, such as

• Neural Network Auto-Regressive (NNAR) Model
• Extreme Learning Machine (ELM)
• Long Short-Term Memory (LSTM) Network

4.1. Neural network auto regressive model

NNAR model is a type of Artificial Neural Network (ANN) model,
where lagged values of time series data will be fed into the system
for its analysis. It uses some complex algorithms to find the relation
between input to output variables. The model tries to build a vectored
output as a linear combination of the previous results. Again for a free
flow condition, the density of the vehicle near the charging station is a
function of car and the time. When they raised the token for charging
the vehicle i.e. the output 𝑢(𝑡, 𝑝) can be modeled as

𝑢(𝑡, 𝑝)𝑛 =
𝑚
∑

𝑖=1
𝑃𝑡 + [𝜌𝑣(𝜌𝑐 )]𝑝 (41)

or

𝑢(𝑡, 𝑝)𝑛 =
𝑚
∑

𝑖=1
𝑃𝑡−1𝐷[𝑖] + 𝜖𝑛 (42)

where 𝑢(𝑡, 𝑝)𝑛 = [𝑢(𝑡, 𝑝)1, 𝑢(𝑡, 𝑝)2,… .𝑢(𝑡, 𝑝)𝑛], it is the 𝑛th sample in 𝑆(𝑣)
plane as shown in Fig. 8. Here 𝐷[𝑖] is a column vector of ′𝜌′ by ′𝜌′
12
matrix. 𝜖𝑛 represents the Gaussian noise function. The mean value of
the Gaussian function is subtracted from the generated time stamp.

The model as shown in Eq. (42) can be remodeled in terms of
multivariate linear regression, such that

𝑢(𝑡, 𝑝)𝑛 = 𝑑(1 ∶ 𝑛)𝑛𝑊𝑛 + 𝜖𝑛 (43)

where, 𝑑(1 ∶ 𝑛)𝑛 = 𝑑(1 ∶ 𝑛)𝑛−1, 𝑑(1 ∶ 𝑛)𝑛−2,… , 𝑑(1 ∶ 𝑛)𝑛−𝑚 are the multi-
variate model. Eq. (43) can be modified as

𝑢 = 𝐷𝑊 + 𝐸 (44)

in Eq. (44), 𝑈 represents (𝑁 −𝑀) by 𝜌 matrix. 𝐷 represents (𝑛 ∶ 1)
by (𝑛 ∶ 1)𝑛 matrix. This shows that the output layer is a fully connected
matrix. The entire NNAR for EV charging demand prediction is shown
in Fig. 9. In the hidden layer for identifying any non-zero activities,
sub-network dynamics can be applied.

4.2. Extreme learn algorithm

ELM is basically used for a single hidden layer. Feed-forward net-
work generally poses only one single hidden layer not in terms of
neuron. Fig. 10 shows the architecture of ELM with one hidden layer.
Here the output of architecture is

𝑓 (𝑢(𝑡, 𝑝)) =
𝑚
∑

𝑖=1
𝛽𝑛, ℎ𝑛(𝑡, 𝑝) = ℎ(𝑝)𝛽 (45)

In the Eq. (45) 𝛽 = [𝛽1, 𝛽2.....𝛽𝑛]𝑛, which represents the n-dimensional
vector as a function of position density of vehicle and ℎ(𝑝) =
[ℎ (𝑡, 𝑝), ℎ (𝑡, 𝑝).......ℎ (𝑡, 𝑝)], represents the non-linear feature mapping
1 2 𝑛
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Fig. 21. Curve fitting analysis (a)Charging demand response (b) Charging demand response vs.fitting analysis (c) Residuals analysis and (d) Charging Demand analysis.
in s(v) plane as shown in Fig. 9. Again in real-time application, the
value of ℎ(𝑝) becomes

ℎ(𝑝) = 𝐺(𝑤̇𝑖, 𝑤̈𝑖, 𝑝) (46)

Here in Eq. (46) 𝑤̇𝑖, 𝑤̈𝑖 represents piece wise continuous function.
Both 𝑤̇𝑖 and 𝑤̈𝑖 were generated randomly. Here hyperbolic tangent
function has been used as a probability distribution function. Therefore
the minimization function as shown in Eq. (21) under the problem
formulation section can be modified as

min
𝛽𝑛∈𝑅𝑛𝑋𝑛

𝑚
∑

𝑖=1
‖ℎ(𝑝)𝛽 − 𝜌‖2 (47)

or

min
𝛽𝑛∈𝑅𝑛𝑋𝑛

𝑚
∑

𝑖=1
‖𝐻𝛽 − 𝜌‖2 (48)

In Eq. (21), 𝐻 represents the hidden layer matrix in n-dimension
as shown in Fig. 10. Similarly, Fig. 11 shows the Extreme Learning
Algorithm Flow Chart with Back Casting.

𝐻 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ1(𝑡, 𝑝)
ℎ2(𝑡, 𝑝)

.

.

.

.
ℎ𝑛(𝑡, 𝑝)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(49)
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Algorithm 1 Pseudo code for ELM based Charging Demand Forecasting
Require: Charging station Demand Data
Ensure: Prediction Model 𝑀𝑝 for EV Charging Station

Data Preparation and Redundancy Evaluation
𝑋𝑖𝑛 Enter the demand history of Charging station 𝐷𝐻 as a function
of time t.
𝑋′

𝑖𝑛 ← 𝑋𝑛
𝐷𝐻 : Nearest Charging Station
for 𝑖 ← 1 to 𝐷𝐻 do

𝑋𝑛: Demand History
𝑋′

𝑖𝑛 ∶ Extended Charging Station
end for
Train the Model
𝑀𝑃 = 𝑓𝐸𝐿𝑀 (𝑥𝑖𝑛ε)
Loss Function= 1

𝑇
∑𝑇

𝑖=1(𝑥
′
𝑖𝑛 − 𝑥𝑖𝑛)2

4.3. Long short term memory network

Long short-term memory network is a part of RNN. It is basically
developed to deal with volatile gradient problems and occurs mainly
due to back-propagated error [24]. RNN uses a weighted sum of the
input signal to calculate non-linear function whereas LSTM uses a
memory called 𝐶 𝑡

𝑗 such that the activation unit.

𝑎𝑡𝑗 = 𝜏𝑡𝑗 𝑡𝑎𝑛ℎ𝑐
𝑡
𝑗 (50)

In Eq. (50), the information about the cell was stored in 𝐶𝑗 state and
in hidden layer (𝑌 ). Generally sigmoid type activation functions were
𝑡
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Fig. 22. Curve fitting analysis for LSTM.
used for analysis. In this research paper, the tangent function was used
for analysis. The time series data will be modeled as a lagging data set
by 𝑄 such that (𝑡 −𝑄) time series data will be given as an input to the
predictor algorithm and that of lagged time data (𝑡) will be considered
as a target set.

Therefore, the memory cell can be modeled as

𝐶 𝑡
𝑗 = 𝑓 𝑡

𝑗𝐶
𝑡−1
𝑗 + 𝑖𝑡𝑗𝐶

𝑡
𝑗 (51)

This LSTM as shown in Fig. 12, will provide an output based on
actual input value retrieved from their memory. Basically, the entire
operation consists of three gates such as the input gate, that control the
flow of the activation function. The sigmoid layer present here controls
the output variable between 0 and 1. The output gate allocates the
amount of memory required for the next gate operation. The last gate
i.e. forget gate generally removes the information from the cell after
its operation. Algorithm 2 represents the Pseudo code for LSTM-based
Charging Demand Forecasting.

5. Result analysis

The time series pattern for the captured data set has been collected
from a charging station from 2017 to 2021 based on the EV vehicle
demand. After the collection of data, a redundancy check has been
performed to evaluate any blank data for repetition. Whenever data
is not available back casting method has been applied to fill the cell.
In a similar way forward casting was also applied to validate the back-
casting operation. In order to train the model the entire data sheet was
split into two parts a training set and a testing set. As per the standard
14
Algorithm 2 Pseudo code for LSTM-based Charging Demand Forecast-
ing
Require: Input: 𝐿𝑡−1

𝑃 |𝑛 ∈ 0, 1, 2, ...𝑛
Ensure: Output: 𝐿𝑝𝑡|𝑡 ∈ 0, 1, 2...𝑡 − 1
1: 𝐶 ← 0
2: 𝑡 ← 0
3: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑢 = lim𝑛 ∈ (0, 1, 2...𝑛)𝐿𝑡−1

𝑝 |𝑛
4: for 𝑛 ∈ (0, 1, 2....𝑛) do
5: 𝐶1 + 𝐿𝑡−1

𝑃 ≥ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑢
6: 𝑟𝑡𝑢 ← 𝑐 + 𝐿𝑡−1

𝑝 .𝑅𝑇
7: 𝐶 ← 0
8: 𝑡 ← 𝑡 + 1
9: 𝐿𝑡

𝑝 ← ℎ𝑡−1𝑝 (1 − 𝑅𝑇 )
10: end for

norms of the machine learning algorithm, the data set was divided into
an 80:20 ratio. Spyder-platform in Python has been used for analysis.
Similarly, the tense flow-enabled Spyder platform has been chosen for
deep neural network analysis.

In order to validate the proposed model, prediction using the three
benchmarking models has been evaluated first and then a comparison
among the models has been carried out. Keeping in view the maximum
allowable window size and not compromising with the noise, the NNAR
model has been tested for different hidden neurons starting from 100
to 800. The performance of the NNAR model is shown in Table 1.
Hence it is observed that for hidden layers of 600, 700, and 800 the
text time is the same of 22.32 s. Similarly, the accuracy train becomes
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Fig. 23. Curve fitting analysis for 𝛼2 LSTM.
Table 1
NNAR performance with variation in neuron level for training and testing set.

m-hidden layers Train time Test time Accuracy train Accuracy test

100 5.27 3.08 87.9 97.3
200 5.22 3.13 87.8 97.14
300 8.22 13.07 86.9 96.21
400 10.76 14.32 83.45 95.02
500 17.88 17.96 84.83 94.84
600 18.07 22.32 84.70 94.64
700 18.76 22.89 84.69 94.61
800 19.03 22.88 84.63 95.03

Table 2
ELM performance for No Prediction (NOP) to Prediction (P).

NOP-1 NOP-2 NOP-3 P-1 P-2 P-3

Count 57.000 57.000 57.000 57.000 57.000 57.000
Mean 107.13 110.26 112.38 103.50 99.27 96.73
STD 6.76 11.61 13.29 6.78 5.28 9.96
MIN 90.63 92.70 87.12 90.49 87.58 89.28
25% 88.80 84.06 89.41 99.50 98.29 94.77
50% 94.38 92.49 94.32 99.11 98.68 92.42
75% 95.67 98.31 100.27 101.17 98.94 99.04
Max 104.79 102.09 107.00 99.97 98.79 98.91

84.70 average. Similarly, the training time is also saturated for higher-
order neural hidden networks. Table 2, shows the NNAR analysis for
nonprediction to prediction.

Therefore, to predict the output more accurately cluster formation
has been carried out with two major data such as charging demand and
multi-step charging demand. Altogether nine slices have been prepared
15
and three round of iteration has been applied to the data set. Table 3
shows the RMS value against nine different slices. Three rounds of
iteration have been applied to evaluate the performance iteration, 2 and
3 slices show an overfitting of data. Similar results of overfitting have
been observed for slice 7. This also increases the noise in predicting
the output. Slice 8 and slice 9 have been considered for predicting
the charging demand of EVs on charging stations. Fig. 13 shows the
monthly prediction of EV demand for actual and predicted based on the
NNAR model. 3 months have been considered such as January 2022,
February 2022, and March 2022. The algorithm works fine for slices
8 and 9 with lower window size and less amount of noise. Maximum
demand for EV charging can be noticed on weekends such as Friday
and Saturday.

Extreme learn algorithm analysis has been carried out with the same
training and testing set. Here random weights were evaluated based on
the neuron level. Seven-layer architecture has been designed in accor-
dance with Fig. 10 and pseudocode algorithm one has shown under
extreme learning algorithm. Tables 4 and 5 shows the performance
measure based on the random variables. Table 6 shows the EV charging
Probability prediction analysis for 𝛼2 – LSTM.

As shown in Table 2, it can be found that NOP-3 is 114 .10
which represents that 86% of changes are there where the system can
predict actually and that of actual 97.68% accuracy is showing under
prediction level-3. Similarly, no such difference from NOP-1 to P-1 has
been noticed in Table 2. Overfitting of data with 75% has been noticed
of 105.67 and that of maximum value of 122.13 has been noticed. The
root mean square error for t + 1, t + 2, and t + 3 becomes 144.535,
123.87, and 121.1491 respectively.
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Table 3
Comparative analysis of Root Mean Square Error (RMSE) of NNAR for 3 Iteration.

Slice RMSE

Iteration-1 Iteration-2 Iteration-3

Slice-1 2.816 2.770 2.806
Slice-2 7.697 7.649 6.835
Slice-3 2.056 2.556 2.319
Slice-4 2.791 2.951 2.885
Slice-5 7.733 7.881 7.040
Slice-6 2.951 2.857 2.918
Slice-7 1.972 3.284 2.901
Slice-8 2.331 2.971 2.678
Slice-9 2.716 2.611 2.677

Table 4
ELM performance with variation in neuron level for training and testing set.

m-hidden
neuron

Train
time (s)

Test
time (s)

Accuracy
train (%)

Accuracy
test (%)

100 23.06 6.48 88.77 90.54
200 8.92 5.44 90.43 91.34
300 14.05 8.71 90.37 92.17
400 18.39 13.24 86.11 91.63
500 23.40 9.59 88.22 90.86
600 18.43 13.08 87.42 89.92
700 19.26 12.85 88.07 93.32
800 25.19 14.61 91.09 92.18

Table 5
Comparative analysis of Root Mean Square Error (RMSE) of ELM for 3 Iteration.

Slice RMSE

Iteration-1 Iteration-2 Iteration-3

Slice-1 3.033 3.128 3.132
Slice-2 3.289 3.161 3.146
Slice-3 3.215 3.220 3.191
Slice-4 2.857 2.945 3.114
Slice-5 3.007 3.305 3.265
Slice-6 2.990 2.841 2.965
Slice-7 3.16 3.075 3.117
Slice-8 2.903 3.031 2.967
Slice-9 3.021 3.091 3.060

Fig. 14, shows the monthly prediction of EV charging demand for
0 days for the first 3 months in a year based on ELA model. Similarly,
ig. 15 represents the LSTM Box plot for 12 month of prediction.

Figs. 16 and 17 show the ELM time lag plot for 7 times and LSTM
ime lag plot for 3 times based components. Here 7 rounds of back
asting have been evaluated to find the relation in charging demand
ith previous day data. In most of the research, it is just x(n-1).
herefore it will not consider the changes in base level. Here a change
as been made by adding the number of vehicles sold under that
egional transport office to the previous day of demand. So instead of
ust x(n − 1) it becomes x(n − 1) + 𝑃𝑘, where 𝑃𝑘 is the probability of
vehicle sold on (𝑛 − 1)th day. Therefore, the time graph seems to be

tatic and no many changes have been noticed after 100 weight.
A comparative analysis for 5 yr from 2017 to 2021 has been pre-

ented in Table 7. It shows a comparative analysis for NNAR, ELM and
STM based on MAPE. Here it can be concluded that LSTM shows better
erformance against all other algorithms. Three characteristics have
een considered for analysis such as charging time with a minimum
Hr. 20M to 2Hr. 50M, SOC level of 37 percent, and traffic congestion
n average of performance is shown under average.

MPE, for 5-yr forecasting, is shown under Table 8. Therefore, from
ables 7 and 8, it can be found that there is a requirement of another
arameter, so that tuning can be proper and accurate prediction can be
chieved 𝛼2 LSTM has been applied to the data set for evaluating the
erformance of the algorithm. Four argument and sigma values were
valuated for the proposed algorithm. Fig. 18, shows the LSTM auto-
16

orrelation for actual with respect to predicted on EV charging station.
Table 6
EV charging probability prediction analysis for 𝛼2-LSTM.

Argument Coefficient Std. error Z P > |𝑍|

𝜌 = 0.3 ar L1 0.1492 0.291 −1.116 0.113
𝛼2 = 0.77

ar L2 0.2311 0.253 0.763 0.472
ar L3 0.1107 0.292 −0.034 0.000
ar L4 0.0619 0.334 0.141 0.398
Sigma 372.44 136.351 2.548 0.000

𝜌 = 0.38 ar L1 0.1573 0.197 −0.812 0.000
𝛼2 = 0.84

ar L2 0.2019 0.228 −0.763 0.191
ar L3 0.1032 0.211 −0.619 0.216
ar L4 0.0542 0.301 0.048 0.000
Sigma 341.09 128.274 1.971 0.000

𝜌 = 0.44 ar L1 0.0793 0.0677 −1.226 0.000
𝛼2 = 0.88

ar L2 0.1874 0.193 −1.197 0.000
ar L3 0.0089 0.167 −1.043 0.000
ar L4 0.0372 0.224 −0.446 0.113
Sigma 296.71 110.09 0.913 0.000

Table 7
Comparative analysis of MAPE for five year forecast.

Characteristics Year NNAR ELM LSTM Average

Charging time
2017 33% 29% 33% 30%

min 1:20Hr
max 2:50Hr

2018 30% 27% 32% 29%
2019 29% 23% 28% 27%
2020 29% 18% 19% 22%
2021 21% 16% 17% 18%

SOC level
2017 9% 4% 24% 13%

37%
2018 13% 9% 17% 13%
2019 19% 23% 15% 19%
2020 22% 21% 18% 20%
2021 23% 19% 24% 22%

Traffic 2017 20% 17% 19% 19%Concession
2018 21% 18% 20% 20%
2019 20% 11% 20% 17%
2020 23% 12% 13% 16%
2021 24% 22% 19% 22%

Table 8
Comparative analysis of MPE for five year forecasting.

Characteristics Year NNAR (%) ELA (%) LSTM (%)

Charging time 2017 7 7 4
2018 6 7 2
2019 2 2 1
2020 −3 −6 −4
2021 −16 −27 −11

SoC level 2017 −1.9 −2.4 3.3
2018 −1.8 1.8 1.6
2019 −1.71 1.9 1.5
2020 0.95 1.28 1.31
2021 1.67 −0.9 −1.1

Traffic congestion 2017 1.77 3.1 2.4
2018 3.24 3.98 2.16
2019 3.9 1.61 1.22
2020 3.03 2.07 2.14
2021 2.71 2.43 2.46

Fig. 19, shows the prediction performance of EV charging demand for
2022 spanning over 12 months.

Fig. 20, represents the curve fitting analysis for the Fig. 20(i) neural
network auto-regressive model & Fig. 20(ii) extreme learning machine.
Fig. 20(i-a) & (ii-a) represents the actual charging demand and the
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Table 9
Curve fitting analysis of benchmarking Model and proposed 𝛼2-LSTM model.

Type of
algorithm

R-Square Actual
slope

Predicted
slope

Randomness
(%)

NNARM 0.061 +0.37 +0.45 16.22
ELM 0.028 +0.42 +0.48 14.07
LSTM 0.041 +0.58 +0.73 10.66
𝛼2-LSTM 0.037 +0.28 +0.31 8.92

predicted charging demand is presented in Fig. 20(i-d) & (ii-d). The
actual charging demand is randomly distributed over the exponential
(rectangular hyperbola) population growth model. During the initial
hour the actual charging demand has shown some negative charging
demand, this is due to over overcharging demand of users for whom
the SoC level is above 90%. All those data have been taken into
consideration for curve fitting analysis. The randomness and R-value
which determine the goodness of fitting values that quantify, how well
the model explains the variance in the data have been considered as
an evaluation criterion for the statistical analysis of curve fitting. The
residual determines the noise level present in the model. After success-
ful iteration, the residuals are shown in Fig. 20 (c). Similarly, curve
fitting analysis for extreme learning machine and LSTM is presented in
Figs. 21 and 22 respectively. In continuation to above Fig. 23 represents
the curve fitting analysis of the proposed 𝛼2-LSTM technique.

Table 9, represents a comparative analysis of curve-fitting technique
tatistics among the benchmarking model and the proposed 𝛼2 -LSTM

model. As observed NNARM model possesses 0.061 of 𝑅2 value with
a randomness of 16.22% and that of the proposed model possesses a
randomness of 8.23%. Similarly, ELM and LSTM possess a 𝑅2 value of
0.028 and 0.041 respectively.

6. Conclusion

This paper presents a novel encrypted deep learning model to
predict the EV charging demand at a charging station. A detailed
comparison of the classical ML model, deep ML model, and encrypted
deep model has been presented. The developed algorithm and model
have also been evaluated with real-time data sets from Bengaluru. Two
types of forecasting analysis have been carried out such as multi-step
and one-month horizon analysis. Based on the result analysis it has
been observed that LSTM appears to be robust as compared to others
and hence AES-128 with 𝛼2 hyperplane has been applied with LSTM
o predict the charging demand with scheduled locking priority for EV
sers.

The 𝛼2 LSTM, also shows that the RMSE has been reduced to
7.12% against 13.37% in the previous literature. Again data noise is
another technical constraint that affects the performance of deep ML
algorithms. In this research paper the introduction of AES-128 to the
LSTM and 𝛼2 has reduced these issues in describing the prediction.

This research work is dedicated to security constraints in data pre-
iction systems and not related to memory constraint issues. If a data
rame of large size is made available then xGboost, prophet method can
e analyzed further.
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