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A B S T R A C T   

Due to the variability of Photovoltaic (PV) output, a forecasting framework is essential for grid connected PV 
plants to ensure a stable and uninterrupted power supply. Among existing prediction and forecasting algorithms, 
only some have attempted to provide a holistic framework for short and long-term forecasting of PV yield 
together using automated input feature selections and data cleaning features. Furthermore, it has been identified 
that many existing algorithms only predicted PV output instead of forecasting in future times; therefore, their 
reported accuracy needs to be upheld in forecasting scenarios. This paper has proposed a framework to 
streamline solar yield forecasting for both the short and long term to ensure effective integration of PV plant 
output with the main grid. The proposed framework has used a novel combination of XGBoost (eXtreme Gradient 
Boosting), time series seasonal decomposition and rolling LSTM (Long- and Short-Term Memory) model to 
address the need for a comprehensive forecasting framework in hourly, daily and yearly periods. Based on our 
experiment result, the developed framework has performed in 98% − 95% prediction accuracy with less than 
0.15% normalized Root Mean Squire error (nRMSE). The framework has performed in 89%- 87% forecasting 
accuracy with less than 0.45% nRMSE. Both the prediction and forecasting performance of the proposed model 
have outperformed many benchmarks forecasting frameworks, including Long short-term memory (LSTM) based 
recurrent neural network (RNN), Full RNN (FRNN), Neural Network Ensemble (NNE), Neural Network with 
AdaBoost, and many more as detailed in our comparative study section.   

Introduction 

Renewable energy opened the opportunity to create sustainable en
ergy sources without impacting the environment. Solar energy is one of 
the most promising renewable energy sources due to its reasonable 
production cost and environmental friendliness. However, due to the 
high dependency on the climatology parameters [1], the PV plants 
produce variable energy output to meet ever increasing demand. Some 

forecasting methods [1,2] exist in the literature to predict influential 
climatology parameters of PV plants’ output. Others have investigated 
performance parameters and PV module improvement in electrical 
characteristics and thermodynamics [37,38]. The study on climatology 
and performance parameters and prediction help to understand corre
lations between environment-oriented conditions, PV output patterns, 
and variability patterns. 

However, accurate forecasting of PV energy output can be very 
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useful for managing and planning PV plants and connected grids. Many 
short-term solar yield forecasting models [3–6] exist in the literature. 
For example, the Australian Solar Energy Forecasting System (ASEFS) 
[3] was developed by the Australian Energy Market Operator (AEMO) 
for forecasting solar generation of 5 min to 7 days timeframes. Few other 
existing works [7,8] have developed long term forecasting models. But 
due to the complexity and high variability of solar yield, the long-term 
PV plants energy forecasting requires long historic data [4,7] to ach
ieve the required accuracy. However, the longer duration of historic 
data, like 15–25 years, is difficult to extract, synthesize, clean and pro
cess. A review of existing models revealed that many proposed fore
casting models have used the same definition for prediction and 
forecasting, leading to failure to adhere to the correct forecasting defi
nition like the one adapted [9] and detailed in Section “Research 
Methodology”. In the literature, the short-term prediction shows a great 
success rate of 98 %, but less detail exists about forecasting (or time step 
ahead prediction) success rate. While short term forecasting can be very 
useful for day-to-day maintenance, load balancing and decision making 
but long-term forecasting is required for planning strategic decisions for 
PV plants connected to power grids. Furthermore, the literature is 
lacking a comprehensive framework to streamline process from raw 
weather data to predict/forecast solar yield of PV stations. 

Therefore, a comprehensive Short-Long (S-L) term PV energy yield 
forecasting framework can be helpful to understand the variability of 
power dispatching and market condition towards profitability. To 
address the gap, this paper has proposed a comprehensive framework 
using hybrid machine learning techniques for both Short-Long (S-L) 
term solar yield forecasting. The paper has made novel contributions to 
the field below.  

• Proposed a framework to streamline both short and long-term solar 
yield forecasting is crucial for the integration of photovoltaic (PV) 
plant output with the main power grid. This approach ensures that 
the variable nature of solar power can be more accurately predicted 
and managed, facilitating a stable and reliable integration with 
existing power systems. 

• XGBoost (eXtreme Gradient Boosting), time series seasonal decom
position, and rolling LSTM (Long- and Short-Term Memory) models 
to leverage the strengths of each method. This combination is 
particularly effective in addressing the complex and dynamic nature 
of solar energy generation, improving the accuracy of solar yield 
predictions.  

• Prediction, long and short term, using a combination of Wavelet- 
based time series decomposition and LSTM  

• Forecasting, long and short-term, using a combination of robust local 
mean decomposition and bidirectional (rolling) LSTM.  

• Comparative study of the proposed models against existing models in 
the context of prediction versus forecasting. This high level of ac
curacy, coupled with a very low error rate, underscores the frame
work’s effectiveness in predicting and forecasting solar yields. 

The proposed hybrid forecasting framework has a holistic solar yield 
prediction and forecasting model for long-short duration. It is evident 
from the comparative study that the proposed model performs reason
ably well compared to similar models in the scale of accuracy and error 
rate. 

The rest of the paper is organized as follows: Section “Literature 
Review” presents a literature review followed by research methodology, 
proposed forecasting framework and model selection in Section 
“Research Methodology”, Section “Proposed Framework” and Section 
“Forecasting model Selection” respectively. Section “Data Preparation” 
details the data preparation where dataset, feature selection and noise 
reduction are detailed in Section “Dataset”, “Selection of features”, and 
“Noise Elimination” respectively. Section “Experimental Results, 
Comparative Study, and Discussion” detailed experimental results in 
section “Experimental Results” which is followed by the comparative 

study and discussion in section “Comparative Study and Discussion”. 
Finally, the closing remarks are presented in Section “Conclusion”. 

Literature review 

Current studies on solar energy forecasting can be classified into 
three main categories: climatology, short term and long-term PV output 
forecasting. Out of the three, most of the current work investigated short 
term (like, hourly, daily, monthly) energy output and climatology 
forecasting [1,2]. Very little work investigated long term (like, yearly) 
forecasting of PV energy output. 

Under climatology, solar irradiation was predicted in the paper [2] 
which has compared and tested three forecasting methods: smart 
persistence, artificial neural network (multilayer Perceptron) and 
random forest. Using datasets from three locations of France and Spain, 
the paper [2] has predicted three components of solar irradiation: global 
horizontal, beam normal and diffuse horizontal. Their comparisons 
among five different forecasting algorithms show that random forest 
performs are better than the other algorithms. The paper [2] also found 
that BNI and DHI are more complicated to predict than GHI. Jennifer 
et al. [1] presented an analysis based on the National Solar Radiation 
Database (NSRDB) to provide a comprehensive 15-year climatology 
across the United States. The analysis was done on a continental, sea
sonal and regional scale to understand optimal solar panels orientation. 
Ray et al. [10] have analyzed large-scale PV stations output data to 
understand the correlation among the variability of PV production at 
different locations in Australia. Understanding of PV output based on 
variation of climate condition is somewhat useful for the transmission 
system operator(s) for future planning of reserve margin for the system. 
Few others in the literature have proposed effective prediction models 
using machine learning and intelligent techniques for forecasting 
influential climatology parameters like solar irradiance for PV output 
[11–13]. 

Within existing literature related to short term forecasting, Raza 
et al. [4] proposed a framework for day ahead forecast of PV power 
output. The authors in [4] have used a Neural Network Ensemble (NNE) 
which is based on Swarm Optimization to get an accurate result in 
various complex network scenarios. The input parameters in [4] were 
selected using wavelet transformed historical power which is used to 
forecast PV outputs for three different types of days: clear, partially 
cloudy and cloudy which are categorized based on the clearness index. 
The performance of the framework proposed in [4] is tested using one- 
year long training set data from seven solar PV sites of the University of 
Queensland, Australia. The authors [4] have used one year’s historic 
data for training and claims that proposed method outperform some 
existing algorithm on MAPE metric which by itself is not enough to 
present accuracy and performance level of the framework. As mentioned 
previously, AEMO [3] uses a short time forecasting model developed by 
Commonwealth Scientific and Industrial Research Organization (CSIRO) 
in 2016 which uses statistical approaches, like decision tree, random 
forest, etc. David et al. [14] have proposed a methodology to generate 
dayahead power output forecasts for two PV plants. The paper [14] has 
investigated the day-ahead power output (PO) from photovoltaic (PV) 
power plants from the National Oceanic and Atmospheric Administra
tion, and the Canadian Meteorological Centre. 

Sheng et al. [15] have proposed a day ahead forecasting model which 
can adapt to the climate characteristics of different regions or periods 
which is a new dimension towards adaptive PV forecasting. However, 
the proposed model [15] has a high error rate which requires im
provements. Few other articles [5,6,16,17] in the literature also pro
posed similar day ahead as well as monthly PV output forecasting 
techniques. For example, Fouzi et al. [5] and Abdelkader D. et al. [5] 
have proposed forecasting model using deep learning with 98 % and 94 
% accuracy respectively. In [5], Abdelkader D. et al. have used deep 
learning with Variational AutoEncoder (VAE) where Fouzi et al. in [5] 
have used LSTM [18]. However, both of the papers did not present data 
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processing or feature selection details. Furthermore, the result is not 
validated in future time step (t + 1) as per forecasting definition in 
Section “Research Methodology”. Ray et al. [7] have proposed a data 
driven yearly PV forecasting model using monthly dataset. Still, the data 
demanding element of the model makes it infeasible to be used by the 
industry. 

Some researchers have used machine learning techniques to model 
physical problems to improve reliability of renewable systems. For 
example, in 2022, Wang et al. [32] proposed a multi-domain physics- 
informed neural network (mPINN) to address heat conduction and 
natural convection challenges, focusing on temperature gradient dis
continuities. They utilized multiple neural networks and innovative 
training methods, finding that uniform residual points and joint training 
yielded the most accurate results. This approach proved effective in 
various heat transfer scenarios, showcasing mPINN’s potential in solving 
complex physical problems. Most recently, Ghalambaz et al. [33,34] 
have used deep learning to understand energy storage and natural 
convection heat transfer mechanisms. 

Understanding the performance parameters and their impacts on PV 
systems in a wide range of outdoor conditions is important to create a 
practical forecasting model. Some studies have evaluated performance 
parameters, measurement techniques, and their modeling [37–40] to 
understand the characteristics of PV systems in actual implementation 
outside of standard test conditions (STCs). For example, Erdem et al. 
have looked into the cooling effect on performance characteristics of 
silicon solar cells used for PV systems. They have performed numerical 
and experimental studies, revealing that cooling applications are 
important to improve the efficiency and maximum power output of the 
photovoltaic modules [40]. These studies are important for under
standing the influence of various electrical and thermodynamic perfor
mance characteristics on PV output. 

As detailed in the above literature discussion, although there exists a 
weekly and monthly [19] PV output prediction model using hourly 
datasets, to our knowledge, there is a lack of prediction models proposed 
in the literature that used hourly datasets for longer-term forecasting 
like a few years. Furthermore, deep learning-based models are proven 
effective for accurate prediction for datasets with variable nature [20]. 
However, more work must be done to present a novel framework that 
will take advantage of both traditional and deep learning algorithms for 
Short-Long (S-L) solar yield forecasting using hourly dataset. The 
framework must be capable of automated feature selection and data 
cleaning for forecasting models. To our knowledge, there is a lack of 
existing work which efficiently derives a novel framework to process 
raw PV data for both short- and long-term forecasting for diverse climate 
conditions. 

Therefore, the proposed framework has integrated supervised 
learning to clean and preprocess data for forecast using statistical 
methods and deep learning methods for different time variation like 
hourly, daily, monthly and yearly. 

The following section has detailed research methodology which is 

followed by proposed framework and model selection respectively. 

Materials and methods 

Research Methodology 

The research methodology used in the paper is illustrated in Fig. 1 
which started with Typical Meteorological Year (TYM) data from the 
location of the PV plants. Then, the TYM data are processed using the 
System Advisor Model (SAM) [21] to generate energy output and to 
prepare the dataset as detailed in Section “Dataset”. 

The hourly data extracted from SAM has many meteorological fea
tures with relevant energy output that are filled with noisy data as 
detailed in Section “Dataset”. The proposed framework process the noisy 
dataset using noise reduction and feature selection techniques with a 
combination of XGBoost and Correlation Index (CI) as detailed in section 
“Selection of features” and section “Noise Elimination”. This research 
used a novel noise reduction technique after feature selection where the 
feature selection process selects appropriate features for forecasting 
model, as detailed in section “Selection of features”. In contrast, the 
noise reduction technique reduces the noise of selected features, so your 
proposed forecasting models are trained accurately with a high success 
rate. The proposed framework in Section “Proposed Framework” will 
forecast both short and long-time duration, as illustrated in Fig. 1, using 
an hourly time series dataset with variable patterns. Therefore, the 
dataset is vigorously tested with several algorithms to select and prepare 
appropriate forecasting models for the proposed framework, as detailed 
in Section “Forecasting model Selection”. Finally, the performance 
evaluation is done to evaluate performance and to validate, as detailed 
in section “Experimental Results, Comparative Study, and Discussion”. 
The performance evaluation allowed us to cross-validate and compare 
our proposed model with other existing forecasting models. It is worth 
noting that, in the literature most have used prediction and forecasting 
synonymously. Still, this paper has adapted prediction and foretasting 
Definition 1 and Definition 2 below from [9] to ensure our proposed 
model ensures a clear distinction between prediction and forecasting. 

Definition 1. (Prediction) Let D be the dataset of time duration t1-tn 
with input x where x  ⊂ D and output y where y ⊂ D. The prediction 
model P use training set xTr|yTr where (xTr ⊂ x)|(yTr ⊂ y) and testing set 
xTest|yTest where (xTest ⊂ x)|(yTest ⊂ y) to train and test itself. Given 
available input values xtn+1 of time dimension tn+1, the trained predic
tion model PT can predict output values ytn+1 of same time dimension. 

Remark 1. The prediction model PT can predict output of past time 
domain. 

Definition 2. (Forecasting) Let D be the dataset of time duration t1-tn 
with input x where x  ⊂ D and output y where y ⊂ D. The forecasting 
model F use training set xTr|yTr where (xTr ⊂ x)|(yTr ⊂ y) and testing set 
xTest|yTest where (xTest ⊂ x)|(yTest ⊂ y) to train and test itself. The trained 
forecasting model FT can forecast output values ytn or ytn+1. 

Fig. 1. Research methodology used to develop the proposed framework.  
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Remark 2. The forecasting model FT can forecast output of present tn 
or future time domain tn+1 using input values of past time dimension t1- 
tn. 

Proposed framework 

Grounded on the work presented in Section “Research Methodol
ogy”, 4, and Section “Proposed Framework”, A Short-Long (SL) fore
casting framework is proposed in this paper as illustrated in Fig. 2. The 
proposed SL frameworks takes processed and cleaned historic data to 
train the developed machine learning models. The dataset consists of 
hourly weather features and relevant energy output as detailed in sec
tion “Selection of features”. The machine learning model of the frame
work learns from the historic data to prepare forecasting of energy 
output in future time. The framework in Fig. 2 has presented forecasting 
in two main groups: short term forecasting, hourly and daily time 
duration, and long-term forecasting, yearly time duration. 

The short-term forecasting is using rolling LSTM model to forecast 
hourly energy for a day-ahead (24 h) of time whereas the long-term 
forecasting is using seasonal time series decomposition model to fore
cast yearly energy output as illustrated in Fig. 2 and detailed in Section 
“Forecasting model Selection”. Our experiment shows that the proposed 
framework can forecast with 84 %-95 % confidence which is promising 
considering is it forecasting in future not prediction [9]. The proposed 
framework can extend the forecasting in a longer time duration, like two 
days or two years, but the error rate increases (Root Mean Squire Error 
(RMSE)) and performs degrades (success rate) sharply for a longer time 
dimension. The experimental and validation result of this proposed 
framework is presented in section “Experimental Results, Comparative 
Study, and Discussion”. 

Forecasting model selection 

This paper has evaluated various neural network and statistical 
machine learning models to perform both short- and long-term fore
casting. For example, as the literature shows, combining LSTM with 
wavelet transform [35] is particularly effective for predicting solar ra
diation because it addresses climatic data’s non-linear and variable 
nature. Wavelet transforms the time-series data into components that 
capture frequency and time information, which helps isolate features 
like seasonal patterns and anomalies. The LSTM network then leverages 
these decomposed components for prediction, utilizing its strengths in 
handling sequential data and long-term dependencies. At the same time, 
integrating robust local mean decomposition with a bidirectional LSTM 
offers a compelling approach [36] to solar irradiance forecasting. The 
robust local mean decomposition effectively preprocesses the data, 
extracting critical features and trends that might otherwise be obscured 
in raw time-series data. 

However, based on the complexity of modeling, data variability, 

experimental accuracy, and objectives for developing a comprehensive 
Long-Short Term prediction model, this research has selected Long 
short-term memory (LSTM) rolling method for forecasting short dura
tion, like hourly and daily. This short-term forecasting ensures regular 
maintenance operation, like balancing energy output with the grid, can 
be proactively planned and auctioned. As presented in Equation (1), the 
rolling-based LSTM adds forecasted values, like On+1, in the training set 
to retrain the forecasting model for forecasting the next value On+2. 

(1) 
As the output features of our dataset have a dependency on prior 

time steps data, like weather, the LSTM one-step rolling-forecast worked 
well for hourly and multi-step for daily (24 h) forecasting with great 
accuracy. 

However, for long duration forecasting, like years, time series 
decomposition model performs better. The time series decomposition 
can automatically decompose time series data to prepare an abstract 
forecasting model using additive decomposition technique as derived in 
Equation (2). 

yt = St + Tt +Lt +Nt (2)  

The derivation of Equation (2) used annotation yt for energy at time 
period t with seasonal component St, trend-cycle component Tt, average 
value Lt and random variation (also called noise) Nt in the data series. 
The long duration forecasting model has considered a season consisting 
of three months. In the additive decomposition technique of Equation 
(2), the level (Lt) and seasonal component (St) remain steady, whereas 
trend (Tt) and noise (Nt) differ for a season. 

This approach is justified as it enhances the LSTM’s ability to inter
pret complex, time-variant patterns in weather data, leading to more 
accurate solar radiation predictions. 

The proposed framework in Section “Proposed Framework” uses 
these selected models for prediction and forecasting. 

Data preparation 

This section has detailed dataset, feature selection, and noise 
reduction in sections “Dataset”, “Selection of features”, and “Noise 
Elimination”, respectively, to prepare input for the proposed forecasting 
framework. 

Dataset 

The proposed forecasting models are trained using historical data of 

Fig. 2. Proposed forecasting framework.  
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10 years, from 2005 to 2015, TYM data of large-scale PV stations around 
Australia from our energy partner [22]. The experiment has considered 
PV plant data from four different Australian states with different climate 
profiles, as detailed below.  

• Western Australia: Albany: Latitude: − 34.9333 and Longitude: 
117.783.  

• Tasmania: Eddystone: Latitude: − 41 and Longitude:148.3.  
• Victoria: Mildura: Latitude: − 34.2333 and Longitude:142.083.  
• South Australia: Mt-Gambier: Latitude: − 37.75 and Longitude: 

140.767. 

The selection of diverse climate profile dataset is to ensure the pro
posed model has generalized implication for all large-scale PV stations. 
The TYM files (.tm2 file extension) are used as meteorological input data 
in System Advisor Model (SAM), which is a software developed by the 
National Renewable Energy Laboratory (NREL) [21], for modelling 
energy output using pre-existing physical PV systems. The pre-exiting 
physical PV model of SAM is fine-tuned based on the PV cell inverters 
and AC lines specification of the PV plants of the data collection points 
mentioned in the list above. 

Based on adjusted physical model specifications of the PV plant and 
meteorological data from TMY files, the SAM calculates relevant energy 
production in various time intervals, like hourly, daily and monthly, 
which can be extracted to an external data storage or in Excel spread
sheet. The initial dataset prepared from SAM’s output included hourly 
energy output and nine meteorological parameters: DNI, DHI, GHI, wind 
speed, wind direction, humidity, dry bulb, wet bulb, and dew point 
temperature. Statistical analysis using Python’s Panda library [23], 
written for the Python programming language, is used for data manip
ulation and analysis to understand the data. For visual analysis, the 
pandas’ group-by method is used to group all data by mean value in 
specific years, months, days, and hours. 

Fig. 3 illustrates yearly grouped mean energy values (kWh) of four 
selected locations in Australia as listed above. The PV station in Victoria 
(Mildura) has produced the highest yearly average, 516 (kWh), whereas 
Albany (WA) produced lowest yearly average 346 (kWh) energy during 
2000–2015 as illustrated in Fig. 3. It is noticeable that all states had 
lesser energy output in 2001 which could be the impact of El Ninõ in 
Australia. 

The initial analysis of meteorological values helped us to eliminate 
wind speed, wind direction and humidity parameters as they have very 
little or no relation with energy output patterns over the years. 

To illustrate the influence of meteorological parameters on energy 
production, Fig. 4 plotted yearly meteorological data with Celsius unit 
against energy output of Albany PV station where time (years), meteo
rological parameters (Celsius) and average yearly energy are plotted on 
x-axis, y1-axis (left) and y2-axis respectively. Based on the yearly data 
illustrated in Fig. 4, the dry bulb relates with energy output amount and 
patterns better than the other two parameters. 

Fig. 5 illustrates yearly meteorological data (with W/m2 unit) against 
the energy output of Mildura PV station where time (years), meteoro
logical parameters (W/m2), and energy are plotted on the x-axis, y1-axis 
(left), and y2-axis respectively. All (GHI, DNI, and DHI) meteorological 
parameters (W/m2) have followed historic energy output patterns 
equally, but DNI has the highest similarity with historic energy output 
amount, as illustrated in Fig. 5. 

The analysis of the rest of the PV stations data showed similar re
lationships between meteorological and energy output. It is clear from 
Figs. 3, 4 and 5 that the weather data, therefore energy output, are 
highly variable. A comprehensive forecasting framework to cover 
required energy forecasting in short and long-time intervals would be 
useful for informed operation and maintenance decisions for PV station 
managers. This analysis gives us the confidence to choose the initial six 
data parameters for further analysis using feature selection detailed in 
section “Selection of features”. The hourly raw data of selected six data 
parameters from SAM are processed using feature selection and noise 
reduction techniques, as detailed in section “Selection of features” and 
section “Noise Elimination”. 

Selection of features 

To identify the best features for the forecasting model, the features 
from section “Dataset” are ranked in Fig. 6 based on Feature Importance 
(FI) and Correlation Index (CI) [10] score. The feature importance 
method of XGBoost is fast and efficient method to obtain scores of input 
versus output for each input feature after the boosted trees constructed 
by gradient boosting. The CI score establishes the degree of the rela
tionship between input and output features [10]. The FI and the CI 
produce a score between 0 and 1, indicating the value or importance of 
each input feature for predicting or forecasting output, where a higher 
score means a more important feature. The condition is formulated as 
shown in Equation (3) for choosing input features for the forecasting 
model in our proposed framework. 

CI(IF ≡ OF) > 0.5andFI(IF ≡ OF) > 0.1 (3) 

Fig. 3. Visualization of yearly grouped mean data.  
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Fig. 4. Historic meteorological data (Celsius) vs energy output of Western Australia.  

Fig. 5. Historic meteorological data (W/m2) vs energy output of Victoria, Australia.  

Fig. 6. Selection score by XGBoost (-) and CI (-).  
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It is evident from the illustrated in Fig. 6 that the GHI, DNI and DHI input 
features have met conditions derived in Equation (3), therefore, these 
three input features are used as input in our prediction models with high 
confidence. It is noticeable that DNI has 94 % score (average of CI and 
FI) in relation to energy, therefore, the DNI ranked highest among all. 

Noise elimination 

The hourly dataset from SAM has 25 % noise in Energy (kWh) col
umn like negative values. To prepare the dataset for proper training and 
testing with a high forecasting success rate, a data cleaning process is 
very critical. A simple data cleaning method, such as removing the entire 
row, cannot be implemented due to the high sensitivity of timestamp 
sequence and high influence of variable input parameters to the output 
value. 

This paper has devised a novel noise elimination algorithm to replace 
those noise data based on the method proposed in 1. The Algorithm in 1 
utilized Extreme Gradient Boosting (XGBoost) [24], which was effec
tively used with the noisy values by detecting the relationship between 
characteristics and transient stability based on Phasor Measurement 
Units (PMU). The learning (L) objective function [17] of XGBoost at 
iteration t can be expressed as Equation (4) where yi represents training 
dataset. The l is the loss function to measure the difference between 
prediction (ŷi) and target dataset which uses Classification and 
Regression Trees (CART) function f (x). The term Ω represents penal
izing function which balances the complexity of the model. 

L(t)=n
i=1l(yi, y(t− 1)

j + ft(x))+Ω(ft) (4)  

As presented in Algorithm 1, the noise elimination process uses XGBoost 
prediction or DNI value to replace noisy entry. 

As the CI value between DNI and Energy is 94 %, the negative energy 
values are replaced with DNI value in the first instance, if DBI == 0 as 
presented in Algorithm 1. This strategy helped us eliminate 5 % noise. 
For the rest of the noise, the algorithm has trained XGBoost algorithm 
using input (DNI, DHI, GHI, dry bulb, wet bulb and dew point) and 
output (Energy) values. The trained XGBoost model helped us to predict 
the remaining 15 % negative energy values with 91 % accuracy, as 

detailed in the process of Algorithm 1. Finally, the algorithm has 
replaced the noisy data with related DNI values for the rest of the 5 % 
where the XGBoost predicted energy is negative. 

As illustrated in Fig. 6, the process has used both the XGBoost and the 
correlation score of DNI to select the best features. 

Experimental Results, comparative Study, and discussion 

This section presents experimental results in section “Experimental 
Results” which is followed by the comparative study and discussion in 
section “Comparative Study and Discussion”. 

Experimental results 

The experiment result is presented in two sub sub-sections below. In 
the experiment, each model is evaluated with fivefold cross validation 
that creates five training and testing sets randomly. 

1. Short-term model: The short-term model uses LSTM deep 
learning technique with the rolling forecast. The proposed framework 
uses an hourly rolling window to 24 timestamps ahead of time to ensure 
hourly and uses daily forecasting. The developed short term forecasting 
model is designed with four LSTM layers and uses Adam [25] optimizer. 
The model takes the historical hourly dataset as input but uses monthly 
segment to train the model and test its prediction accuracy before 
forecasting. Fig. 7 has overlapped hourly historic and predicted data of 
7 days (a week) of Feb 2015 from Mildura, Victoria where the X-axis 
presented the time as days and the Y-axis presented Energy as kWh. The 
prediction result of Feb 2015 in Fig. 7 has achieved 99 % accuracy and 
0.067 normalized RMSE. The rest of the datasets, detailed in section 
“Dataset”, have achieved similar accuracy for prediction using this 
short-term model. 

The model loss and accuracy for the short-term forecasting is illus
trated in Fig. 8 and Fig. 9. In total, 100 iterations were used to build the 
model, which started with a loss of 0.07 and ended with a loss of 0.0038 
as illustrated in Fig. 8. The model started with an accuracy of 0.32 and 
ended with 0.90 after 100 Epoch as illustrated in Fig. 9. 

The trained rolling LSTM model is then used to forecast solar yield of 
24 h for a specific month of the following year. For example, the model 

Algorithm 1: Data processing 
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has used data from February 2015 to forecast the energy yield of 1st 
February 2016. The Fig. 10 has plotted one month’s (February 2015) 
historic data (blue colored line) with the forecasted data (yellow colored 
line) of the first day of the following year 2016 (1st February 2016) from 
Mildura, Victoria where the X-axis presented the time as the day of the 
month (February) and the Y-axis presented Energy as kWh. The fore
casting in Fig. 10 has achieved a 90 % success rate with 0.068 normal
ized RMSE. 

To get a generalized performance indicator of the proposed short- 
term forecasting model, this paper has experimented using all four 
datasets detailed in section “Dataset”. On average, the trained LSTM 
model can predict with 98 % accuracy for each month across all our 
historical data. In contrast, the forecasting has archived an 89.5 % 
success rate, which varies from 87 % − 92 %, as presented in Table 1. 
The average Mean Absolute Percentage Error (MAPE) is 5.59 % for the 
short-term forecasting model with normalized RMSE from 0.11 to 0.14, 
as presented in Table 1. 

2. Long-term model: The long-term forecasting is using a time- 
series additive model where energy is considered as a function of 
time. Like the short-term model, the long-term model has taken an 
hourly dataset as an input as illustrated in the proposed framework in 
Fig. 2. The long-term forecasting model processes the hourly data to 
segment as a monthly task, so the features are consecutive to a month of 
the year. The long-term model uses a quarterly window that means three 
consecutive months of a year is one quarter. The three months were 
selected based on patterns of every season with the help of the seasonal 
component of the time series decomposition model. For example, in 
Victoria, Australia November to January is considered as summer. 
Therefore, to predict a year, the long-term model needs to go forward 
three-time steps ahead of time. Similar to short-term models, the long- 
term model is also trained using historic data for prediction with 93 % 
accuracy. Fig. 11 has presented five years prediction results of Mt- 
Gambier, South Australia, from 2009 to 2014, using a long-term 

Fig. 7. Prediction result of a week using short-term model.  

Fig. 8. Model Loss (-) graph of short-term prediction model.  
Fig. 9. Model accuracy (-) graph of short-term prediction model.  
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forecasting model where the X-axis presented time as a quarter of a year 
and the Y-axis presented Energy in kWh. 

The trained long-term model is used for forecasting five years ahead 
of time as presented in Fig. 12 where X-axis presented time as years and 
Y-axis presented Energy as kWh. This experiment using, Mt-Gambier, 
South Australia, data has achieved 84 % forecasting accuracy when 
set with 20-time steps to forecast five years ahead of time. To get a 
generalized performance indicator of the proposed long-term fore
casting model, this paper has performed experiments using all four 
datasets detailed in section “Dataset”. On average, the trained long-term 
model can predict with 95 % accuracy for five years across all of our 
historic data whereas the forecasting has achieved an 87 % success rate 
for one year but 80 % (various from 79 % − 80 %) with a Mean Absolute 
Percentage Error (MAPE) of 5 % for five years as presented in Table 2. 

During prediction, the model has calculated trend component, Tt, 
over the seasons using seasonal patterns (St) as derived in Equation (2) 
and illustrated in Fig. 13. The residual of the model shows that the long- 
term model has performed very well with repeated seasonal patterns but 
could improve to pick up unusual seasonal pattern changes. 

section “Comparative Study and Discussion” has presented a detailed 
comparative study and discussion between proposed framework and 
existing similar works. 

Comparative study and discussion 

It is evident from the experiment that feature selection and noise 
elimination are two key important ingredients of an effective prediction 
or forecasting model that uses intermittent dataset with high fluctua
tion. This finding is supported by recently published literature in similar 
domain [31]. Therefore, the proposed framework has used multiple data 
analysis and machine learning based hybrid model to get best features 
and effective noise elimination which are crucial to get prediction/ 
forecasting outcome appropriate for practical application. Based on the 
experiment result in section “Experimental Results”, the rolling method 
works well for short term forecasting with steaming or live data 
collected in short time frequency, like minutes and hours, due to the 
walk-forward technique for prediction/forecasting as proven in Section 

Fig. 10. Historic data (February 2015) with forecasted data (February 2016) using short-term model.  

Table 1 
Validation metric of short-term forecasting.  

Location Accuracy MAPE RMSE nRMSE 

MT Gambier 89  3.01  12.02  0.12 
Albany 92  1.9  10.64  0.11 
Eddystone 87  4.01  13.05  0.14 
Mildura 90  2.17  12.30  0.13  

Fig. 11. Quarterly -Yearly Prediction result.  
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“Forecasting model Selection” and section “Experimental Results”. 
Whereas, due to the variability of the data distribution, it is important to 
get seasonal patterns grouped together to get effective long-term pat
terns that will result in better prediction/forecasting, as detailed in 
Section “Forecasting model Selection” and section “Experimental 
Results”. 

In our knowledge, no existing solar yield forecasting framework can 
predict and forecast for both short and long time. Therefore, it wasn’t 
very easy to prepare a comparative study. Furthermore, much of the 
existing work has used prediction and forecasting interchangeably with 
incomplete performance results, so validation results are not always 
comparable. Keeping all these difficulties in mind, this paper has 
compared the proposed models with some existing short- and long-term 
prediction/forecasting models in Table 3 that has considered four 
important performance parameters, Accuracy (R2), MAPE, RMSE, and 
normalized RMSE (nRMSE). Most short-term models in existing litera
ture only presented MAPE and RMSE values as performance indicators. 
The proposed short-term prediction model has the lowest RMSE and 

MAPE, whereas the forecasting model has the second-best MAPE and 
third best RMSE value. It is important to note that all the short-term 
prediction/forecasting models with lower RMSE than the proposed 
model in Table 3 have used one specific dataset to validate their model, 
whereas the proposed model used four datasets with different distribu
tions to validate and then averaged the RMSE for generalization. Both 
prediction and forecasting of the long-term model have achieved higher 
accuracy than existing models, as presented in Table 3. 

As result detailed in section “Experimental Results”, the proposed 
model’s prediction accuracy is higher and error margin is lower than the 
forecasting accuracy and the error margin. The prediction accuracy and 
error does not vary when prediction time length increases given similar 
data distribution, but the forecasting accuracy varies with higher fore
casting time steps (duration). For example, the forecasting accuracy will 
be low, and error will be high for five years ahead of time compared to 
one year ahead of time. Therefore, based on our experiment result, the 
forecasting accuracy (R2) value of a PV yield forecasting model is always 
dependent on Model design (Md), future time (ti) length, and data dis
tribution (FD) as derived in Equation (5). The accuracy of the forecasting 
model has an inverse linear relationship with future time (ti) length 
therefore the accuracy gets lower when the time (ti) value increases 
which is evident from one year (87 %) and five-year long-term fore
casting accuracy value (80 %). 

FR2 = Mf (ti)+ f (FD)+Md (5)  

The prediction accuracy depends only on model design (Md), target 

Fig. 12. Yearly forecasting result of Mt-Gambier-SA.  

Table 2 
Validation metric of long-term forecasting.  

Location Accuracy MAPE RMSE nRMSE 

MT Gambier 83  6.54  16.65  0.12 
Albany 81  5.15  17.45  0.16 
Eddystone 81  6.12  17.05  0.16 
Mildura 80  4.56  18.7  0.17  

Fig. 13. Seasonal (Quarterly) energy trend pattern.  

B. Ray et al.                                                                                                                                                                                                                                     



Energy Conversion and Management: X 22 (2024) 100535

11

dataset (TD) and data distribution (PD) as derived in Equation (6). The 
data distribution impacts on both prediction and forecasting accuracy 
that is evident from the results presented in Table 1 and Table 2 where 
accuracy value varies with the change of dataset. 

PR2 = Mf (ti)+ f (PD)+Md (6)  

Based on the experiment, adapted definitions [9] of prediction and 
forecasting, it is apparent that prediction and forecasting should be 
considered two separate categories when presenting the model, frame
work and their results. 

Furthermore, the paper has performed a t-test to calculate t-value 
and p-value on success rate between the proposed model and existing 
models. For long-term prediction, the t-value = − 1.4474 whereas the p- 
value = 0.098969 which is significant at p ¡ 0.10. For short-term pre
diction, the t-value = − 1.16248 whereas the p-value = 0.144592 which 
is significant at p ¡ 0.15. 

Compared to the single purpose prediction/forecasting model, the 
proposed framework takes higher computational resources and longer to 
complete the initial training. However, due to lack of comprehensive 
prediction/forecasting framework like the proposed one, it is not 
possible to compare the complexity of the proposed framework in 
numeric scale. The proposed techniques in the framework are validated 
using diverse climate data from Oceania region, therefore, there can be a 
need for further training when a new data distribution is introduced to 
the proposed framework. Finally, the noise eliminations technique may 
need further refining if the degree of changes in data distribution and 
noise increase significantly. 

Conclusion 

A robust solar yield forecasting model can be useful for the energy 
sector to achieve the best out of the solar renewable energy. This paper 
has proposed a long-short term solar yield prediction and forecasting 
model with high accuracy. The research methodology of the proposed 
framework has used a systematic process to automate feature selection 
for the proposed models training and testing. A novel noise elimination 
technique is utilized to process the raw data as a direct input to the 
proposed framework. To establish generalized error and success rate of 
the proposed prediction and forecasting models, the paper has used 
robust validation parameters and datasets of diverse climate conditions. 
The validation parameters of the proposed techniques and models are 
compared with similar existing ones in Table 3. It is evident from the 

comparison table; the proposed framework is effective to understand 
future solar yield with less error compared to most of the existing 
models. Due to its higher robustness, adaptability and generalize nature, 
the proposed framework can be a very useful tool to enable proactive 
operation and maintenance for grid connect PV systems. The critical 
findings of this study are below.  

• A robust optimization techniques-based method, like XGBoost, is 
critical to eliminate noise and select appropriate features from large 
and complicated datasets with high variability in distribution.  

• The combination of LSTM with wavelet transform is particularly 
effective for predicting solar radiation because it addresses climatic 
data’s non-linear and variable nature.  

• Integrating robust local mean decomposition with a bidirectional 
LSTM offers a compelling approach to solar irradiance forecasting. 

The proposed noise elimination and feature selection process are 
valid when the outdoor performance parameters of the PV system are 
the same. The proposed framework was tested with a dataset from the 
same geographical area. Therefore, the result will be valid when a 
similar data distribution is used with the proposed techniques. The ex
periments have considered a wide range of high-performing machine 
learning techniques for our experiment but not all existing techniques. 
In the future, the proposed framework will be tested using diverse data 
distribution from different geographical regions to make the framework 
more generalized. It will be very interesting to compare the result of 
continuous learning and transfer learning with the proposed framework 
to improve its practical acceptability. Finally, it will be critical to un
derstand the influence of physical, electrical, and thermodynamic pa
rameters on the performance of the frameworks. 
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Table 3 
Results of comparative study.  

Models Success Rate MAPE RMSE nRMSE 

Short Term Forecasting/Prediction     
Random forest (RF) [2] – 26.57 88.62 0.19 
Neural Network Ensemble(NNE) [4] 91 9.35 – – 
ASEFS(AEMO) - Persistent [3] – 13.9 18.4 – 
North American Mesoscale (NAM) - Persistent[14] – 9 14.0 0.30 
Neural Network with AdaBoost [7] – 22.74 44.21 – 
Weighted k-nearest neighbour (WkNNs) [16] – 7.7 10.37 – 
Radial basis function neural network (RBFNNs) [16] – 9.14 11.83 – 
Regression neural network (PCA-GWO-GRNN) [26] – 4.96 12.23 – 
Genetic algorithm-based SVM (GASVM) [27] – 1.70 11.22 – 
Convolutional Neural Network (CNN) -PVPNet [28] – 10.94 16.31 – 
Deep learning - LSTM - Prediction [29] 99.2 12.45 16 – 
Deep learning - LSTM - Prediction [5] 98 8.93 18 – 
Variational AutoEncoder (VAE) model- Prediction [5] 98 8.93 18 – 
Long Term Forecasting/Prediction     
Deep learning hybrid (LSTM-CNN) [7] 90 2.83 3.89 0.05 
Full recurrent neural network (FRNN) [30] 74 – – 0.49 
Proposed Framework     
Short-term Prediction 98 0.566 5.96 0.061 
Short-term Forecasting 89.5 2.77 12 0.10 
Long-term Prediction 95 0.95 10.5 0.15 
Long-term Forecasting 87 5 12.45 0.45  
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