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A B S T R A C T   

Energy management in Micro Grids (MG) has become increasingly difficult as stochastic Renewable Energy 
Sources (RES) and Electric Vehicles (EV) have become more prevalent. Even more challenging is autonomous MG 
operation with RES since prompt frequency control is required. We provide an innovative Energy Management 
Strategy (EMS) for MG with grid support in this academic publication. By integrating RES and EV storage, we 
seek to decrease reliance on the grid. The EMS consists of three execution phases: Ranking for EV Recommen
dation (RER), Optimal Power Allocation (OPA) for Fleet, and EV Storage Allocation (OAES). The aim of slicing 
the time in to smaller in intervals is to update the energy and power scheduling in shorter intervals as per the 
changes are going on in the system. The period of 24 h is divided into 96 intervals (t) and storage requirements 
(kWh/t) are estimated based on the estimated load and RES together with the necessary storage volume. We 
employ three approaches that are frequently used for communication channel power allocation optimization to 
accomplish OAES. With two objectives: minimum network power loss plus voltage fluctuations, the Multi- 
Objective Optimization Problem (MOOP) is solved for each ’t’ based on OAES to provide the Optimal Power 
Flow (OPF). The Pareto-front is used to calculate the best amount of power from each fleet in each ’t’. The data 
received from the fuzzy rule base is used in the third stage to train an intelligent Convolutional Neural Network 
(CNN), which has rank of EV as an output and four decision variables as inputs. The main goals in this stage are 
to minimize battery degradation and to make the most of it for MG support. With the aid of a MATLAB-based 
simulation setup and heterogeneous entities, the primary goal of EMS is examined and put into practice in an 
On-grid MG.   

1. Introduction 

The reliability of power systems with DERs, AC/DC loads, and energy 
storage has recently been improved using MGs. Through the use of 
power converters, MGs improve energy efficiency when combined with 
RESs like PV plants, ESSs, and EVs [1]. Using DERs and regulated loads, 
MG operators can profit from selling excess power and offering 
dependable power. To maximize profit, it is essential to have a smart 
EMS, an effective energy price policy, and the use of incentive programs 
and service markets [2]. Different optimization approaches have been 

used on MGs, including conventional methods as well as artificial in
telligence techniques like genetic algorithms and differential evolu
tionary methods [3]. These methods aim to reduce the operating costs of 
MGs at realistic energy prices while taking into account a number of 
variables, including the use of grids, RES, energy storage systems, fuel 
stacks, and residential load demand. 

For instance, a genetic algorithm was used in Ref. [4] to solve the 
power flow problem and to reduce the operational cost of a DC MG, and 
an adaptive differential evolution algorithm was proposed in Ref. [5] for 
the same problem. Additionally [6], concentrated on a techno-economic 
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analysis using smaller Hybrid RES parts to satisfy particular household 
power requirements. In the future years, it is projected that EVs will play 
a crucial role in the power grid, potentially resolving the world’s fossil 
fuel shortage and air pollution crisis [7]. The efficient use of electric 
vehicles (EVs) as loads and power storage batteries coupled with 
renewable energy sources (RESs) can dramatically reduce emissions [8]. 
But when EVs are connected to the electrical grid, there are technical 
issues that need to be carefully handled. 

A network for energy storage, EV energy monitoring, and energy 
delivery was suggested in Ref. [9] as a way to improve the use of 
recurring PV sources for charging EVs. In order to reduce the overall 
operating cost of the parking space, this strategy schedules EV charging 
and discharging to maximize the usage of energy from RES and Energy 
Storage System (ESS). The current study suggests the best functional 
methods for lowering the operating costs of microgrids (MGs), which 
include EVs and RES in addition to other DERs. Due to the voltage 
profiles’ sensitivity to changes in load and DERs, low-voltage DC (LVDC) 
distribution systems’ voltage regulation has attracted a lot of attention 
lately [10]. Due to its relatively low voltage (1500V DC), LVDC distri
bution systems are quite sensitive to changes in the electricity generated 
by sources like PV plants. In LVDC distribution systems, the typical 
range of voltage profiles is 0.82–1.10 per unit. 

Researchers have suggested several voltage-control methods, 
including those described in Ref. [11], to address this problem. In order 
to determine voltage sensitivity factors (VSFs) and correct for voltage 
issues appropriately, these methods coordinate the principal converters 
and DER sprinkling in a power supply system. The working rate of DERs 
and total operating costs are ignored, and the voltage adjustment 
strategy is only applied after a voltage problem has occurred, which are 
some of the shortcomings of these systems. Future studies should look 
into more practical and effective solutions to this important problem. 
The addition of RESs and EVs to the power system can exacerbate cur
rent problems by increasing peak load demand and causing uncertainty 
[12]. The management of MGs with EVs has been the subject of 
numerous research, and parking lots acting as active distribution net
works have shown promise in resolving this problem [13]. 

Appliance load adjustment and EV power trading have been made 
possible via a network that integrates EV aggregators and customers 
[14]. In the event of a power shortage, available energy from battery 
storage systems can be used to supply neighbouring MGs with power. 
Further research has been done on the possibilities of fuel cell electric 
vehicles (FC-EVs) in MGs [15]. Virtual power plants (VPPs) have also 
been studied for combined power plus standby planning, with the 
impact of CO2 emissions taken into account via a penalty mechanism 
[16]. There are opportunities when electric vehicles (EVs) are integrated 
into microgrids (MGs). The total load demand may fluctuate as a result 
of EVs, but they also offer a chance to monitor intermittent electricity 
produced by renewable energy sources (RESs). Long charging times are 
one issue with EV charging. A distributed active framework for allo
cating a sizeable number of EVs by taking into account many parking 
lots is presented in Ref. [17], while hierarchical event-driven multi-
agent models have been employed to tackle the corresponding charging 
arrangement issue of EVs in Ref. [18]. Reference [19] suggests a 
scheduling issue for EVs for various parking lots assigned to the elec
tricity system and supplied by RES. Due to the bidirectional power flow, 
V2G systems can be difficult to control and stable. In order to protect the 
battery and extend its longevity, it is critical to correctly monitor and 
control the battery’s level of charge in V2G systems. 

In a trailblazing series of studies, researchers explored multifaceted 
aspects of energy solutions. Study [20] delved into transactive energy 
dynamics, while [21] optimized microgrids with diverse resources, 
ensuring resilience [22]. pioneered consumer-centric microgrids, 
balancing tech and economics. Additionally [23], provided vital sizing 
guidelines for hybrid renewable systems. Study [24] focused on micro
grid operations, optimizing switching mechanisms for enhanced voltage 
profiles. Meanwhile [25], tackled vehicle-to-grid technologies, reducing 

costs and emissions while stabilizing networks. In the realm of electric 
vehicles [26], optimized vehicle-to-grid technologies, meticulously 
balancing operational costs and emissions. 

Further innovations emerged with Study [27], integrating hydrogen 
storage with photovoltaics for emerging electricity markets. Study [28] 
proposed a real-time cooperative system for hybrid microgrids, guar
anteeing energy supply while lowering market prices. Simultaneously 
[29], revolutionized district heating site selection, optimizing energy 
costs with GIS-based tools. Lastly [30], introduced an innovative Energy 
Management System with a Multi-Agent System, optimizing energy 
utilization in neighbourhood grids. Together, these studies exemplify 
the cutting edge of sustainable energy research. 

The quality of the power in the grid may be impacted by the high 
amounts of harmonics and voltage fluctuations that EV power may 
produce. Despite the fact that V2G and G2V may result in more charging 
and discharging cycles, which may hasten battery deterioration, a well- 
designed battery management system and suitable charging rates can 
help to lessen these adverse impacts. A comprehensive strategy for 
controlling energy in MGs with RES and EV/fleet storage is provided by 
the proposed EMS. With EVs acting as virtual storage units, the EMS 
seeks to decrease reliance on the grid and enhance the use of renewable 
energy sources. This method has the potential to increase grid stability 
and energy efficiency while promoting environmental cleanliness. The 
power handling of MGs with EVs and RES is therefore improved, which 
is a positive finding. 

The EMS operates in three stages. 

Stage I. Optimal Allocation EV Storage (OAES) 
Objective: Load flattening to reduce grid dependency. 
Method: Utilizes common techniques for optimal power allocation in 

communication channels. 

Stage II. Optimal Power Allocation (OPA) for Fleet 
Based on OAES, solves a Multi-Objective Optimization Problem 

(MOOP) for each ’t.’ 
Objectives: Minimize network power loss and voltage fluctuations. 
Determines the optimal power allocation from each fleet on the 

Pareto-front. 

Stage III. Ranking for EV Recommendation (RER) 
Employs an intelligent Convolutional Neural Network (CNN) trained 

with data from a fuzzy rule base. 
Inputs: Four decision variables; Output: Rank of EV. 
Objectives: Minimize battery degradation and maximize utilization 

for MG support. 
The main features of the proposed study that stand out as innovative 

include.  

⁃ Optimal EV storage utilization by predicting OAES using three 
alternative approaches in each interval of the provided zone.  

⁃ Optimal power allocation (OPA) for fleets to reduce voltage swings 
and network power loss.  

⁃ With four decision variables that affect how well EV storage is used 
and how quickly battery life degrades, a fuzzy controller is used to 
determine ranks for EVs in each t.  

⁃ Intelligent CNN selection of EVs by ranking, where the training data 
is generated from the synthetic data (fuzzy rule base).  

⁃ In addition to voltage profiles, many scenarios have been used to 
examine grid energy costs and EV battery longevity. 

Assumptions.  

✓ Fleets are treated as three-phase loads, therefore load imbalance is 
not taken into account. It is assumed that EV fleets had been posi
tioned ideally in the MG.  

✓ Phase load imbalances caused by single-phase residential charging 
have not been taken into account. 
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✓ Owners of EVs consented to MG assistance in exchange for certain 
incentives and a pre-request for EV charging when traveling.  

✓ Due to the low X/R ratio, the effect of active power flow on voltage 
control is taken into account.  

✓ It is expected that the MG’s communication configuration has been 
built for the flow of data and control. 

The key factor here is EV as virtual storage unit avoiding additional 
expenditure on fixed storage systems for energy management. However, 
EV as a virtual storage unit involves lot of constraints out of which we 
address some of the key constraints such as battery degradation, 
economical benefit and owner flexibility. 

The remaining of this article includes the following: in section 2 EV 
mobility model is presented, in section 3, cost calculations for energy is 
discussed followed by section 4 which explains about state of health of 
the battery. Section 6 is dedicated for proposed energy management 
strategy. Section 6 is dedicated for optimal Allocation EV Storage fol
lowed by section 7 that explains about MOOP formulation for OPA and 
section 8 is dedicated for smart selection of EVs and finally in section 9, 
results and insights are discussed. 

2. Modelling of EV mobility 

2.1. EV mobility model 

In this work, we take into account two EV use cases: EVs residing at 
home and EVs residing in the Fleet. Initially, a straightforward proba
bilistic method is used to estimate, without accounting for any uncer
tainty, the likelihood that a vehicle will be available at home. However, 
this uncertainty is later taken into account in the plug-in electric vehicle 
(PEV) availability prediction. The charging of PEVs outside of the home, 
which is supposed to happen due to unanticipated trip extensions, is not 
taken into consideration. It is confirmed that in this investigation, the 
needed State of Charge (SoC) and the amount of charge in the battery 
before the trip begins are both always set at 0.8. Scheduling PEVs for 
grid support requires an accurate estimation of their availability. In 
order to do this, PEV mobility models are utilized, which report on the 
preparedness of the vehicles for grid support depending on their state of 
charge level and current idle time. In this study, the PEV mobility model 
is developed using data from the British National Travel Survey (NTS). 
Estimating the total amount of energy that can be stored by all EVs is 
required to provide V2G support, whereas figuring out the storage ca
pacity of each EV is necessary to enable G2V support. However, because 
of the uncertainty around EV availability and the level of energy con
sumption brought on by unforeseen journey itineraries, precisely 
calculating this during EV scheduling can be difficult. Let’s say a PEV has 
a low SoC status and is predicted to stay at the residence in a discharge 
zone for a long time. In that situation, it would be wise to plan the 
vehicle for a later time in the same zone. This plan makes sure that the 
PEV’s available energy is used effectively and, when necessary, con
tributes to grid assistance. 

SoCnew
i,ev = SoCold

i,ev −
(

Sold
i,ev − γl

)/
Scap,i

ev (1)  

SoCnew
I,ev = SoC after traveling of length  

SoCold
i,ev = SoC before travel  

SoCcap,i
ev =EV battery capacity (kWh)

Overall, Equations (2) and (3) offer a trustworthy way to identify the 
SoC stages of PEVs engaged in grid repair. This strategy is required to 
guarantee the grid support capabilities and efficacy of PEVs over the 
long run. For Case discharging, and charging cases, 

SoCt+1
i,ev =SoCt

i,ev −
(

St,i
ev − St+1,i

pev

)/
Scap,i

ev (2)  

SoCt+1
i,ev =SoCt

i,ev +
(
St+1,i

ev − St,i
ev

)/
Scap,i

ev (3)  

SoCt+1
i,ev =SoC in the interval ′t + 1′  

SoCt
i,ev =SoC in the interval ’t’ 

The laxity of PEV is indicated in intervals by Equations (4) and (5). A 
higher laxity suggests that the vehicle will be more flexible in providing 
grid support, whereas a lower laxity suggests that the vehicle would be 
less flexible. The laxity value is determined depending on a number of 
variables, including the current SoC, target SoC, departure time, 
maximum power rate, and capacity of the battery. So when employing 
EV storage to support the grid, it is an important factor to take into 
account. Notably, the goal SoC is set at 0.8 for all EVs. 

Li,t
ev = ti

d − t − Ti
ch (4)  

Li,t
ev = ti

d − t −
(
SoCi,t=td

ev − SoCi,t
ev

)
Si,cap

ev

ηPi,t
rate

(5)  

SoCi,t=td
ev =SOC required by the time of departure  

td = time of depature (interval)

Pi,t
rate =C rate (kW)

2.2. Estimation of storage capacity  

(i) EVs staying at the residence 

In order to avoid any delays to the journey schedule, the utility must 
guarantee that the EV’s target SoC is maintained before it departs. Laxity 
is a measure of the SoC’s degree of flexibility and the length of the grid 
support period. It is carefully monitored to make sure the SoC stays at 
the upper limit of 0.8 before the EV’s departure time interval of 96. 
However, the SoC is anticipated to have run out once the car returns 
from its trip because of energy use. Eq. (6) is used to calculate the total 
amount of storage space for EVs currently available for charging in zone 
z. Eq. (7) is also applied to estimate the total energy presented for dis
charging in the same zone. At the beginning of each interval in the zone, 
the value of E_ev^(cap, i) is assessed. It’s a prevalent misconception that 
employers have readily accessible electric vehicle fleets that are parked 
there all day. Researchers have examined mobility data to assess the 
availability of these vehicles and their capability for V2G and G2V op
erations. Probability density functions have been derived by looking at 
historical data on EV arrival and departure. 

Sg2v
ev =

∑x+y

i=1

{
0.9 ∗ Scap,i

ev − Si,t
ev

}
∗ pi,t

avail (6)  

Sv2g
ev,t=1 =

∑y

i=1

{
Si,t

ev − 0.2 ∗ Si,cap
ev

}
∗ pi,t

avail −
∑x

i=1

{
Si,t=td

ev − Si,t
ev

}
(7)  

Sg2v
ev,z = Storage available for G2V  

Sv2g
ev,z = Storage available for V2G  

Si,t
ev = Storage available in ith EV    

(ii) EVs staying in fleet 

For a given day of the week, in the tth time, the possibility of ith EV 
coming is pa

i,t plus that of for retreat is pd
i,t. The CDFs are pa,c

i,t and pd,c
i,t for 

arrival and departure respectively. 
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pj
i = pa,c

i,t − pd,c
i,t (8) 

L is defined as EV’s vector is represented by (9) 

L= [ l1l2l3………. lN] (9) 

SoCs at the time of arrival are given by (10). 

SoCarr
ev =M

/
C [ l1l2l3………. lN] (10) 

A dip in SoC is expected for consumption for the trip (11). 

SoCnew
i,ev = SoCold

i,ev −
(
Eold,i

ev − γl
)/

Ecap,i
ev (11)  

Here, SoCnew
i,ev is nothing but SoCarr

i,ev. 
The SoC levels updated after each interval are as follows for V2G and 

G2V. 

SoCt+1
i,ev = SoCt

i,ev −
(
St,i

ev − St+1,i
ev

)/
Scap,i

ev (12)  

SoCt+1
i,ev = SoCt

i,ev +
(
St+1,i

ev − St,i
ev

)/
Scap,i

ev (13) 

Available storage for G2V and V2G is given by (14) and (15) from 
each EV. 

eg2v
i,j = pj

i ∗ C ∗
(
1 − SoCj

i − 0.2
)

(14)  

ev2g
i,j = pj

i ∗ C ∗
(
SoCj

i − 0.2
)

(15) 

Total available storage for G2V and V2G is given by (16) and (17). 

Sg2v
ev,z =

[
s1,g2v

i s2,g2v
i s3,g2v

i ………….sN,g2v
i

]
(16)  

Sg2v
ev,z =

∑N

j=1
ej,g2v

i (17)  

Sv2g
ev,z =

[
s1,v2g

i s2,v2g
i s3,v2g

i ………….sN,v2g
i

]
(18)  

Sv2g
ev,z =

∑N

j=1
sj,v2g

i (19)  

3. Cost of grid power 

The state of the location, the DISCOM serving the area, the type of 
institution, and the electricity consumption all play a role in deter
mining the energy rate for educational institutions in India. Schools are 
typically billed at higher rates than residential customers since they are 
considered commercial or industrial clients. The three-part tax model 
used in India’s energy tariff structure combines a fixed cost (a), a semi- 
fixed cost (b), and a variable cost (c). Table 1 presents the tariff structure 
for easy comprehension. Let the maximum demand that is authenticated 
with utility (Pg,kVA

max ) be 850kVA. There will be a minimum demand up to 
which it is fixed is 80 % of Pg,d

max which is shown below. 
0–80 % of Pg,kVA

max , the price is Pg,kVA
max ∗ 0.8Cg

d (Fixed Cost). 
80–100 % of Pg,kVA

max , the price is Pg,l
max ∗ Cg

d (Semi-Fixed Cost). 
> 100 % of Pg,kVA

max , the price is Pg,l
max ∗ Cg

d + Pg,l
extra ∗ Cg

d (With penalty). 

Where, Pg,l
max is the extreme power consumed by the utility grid. 

The total price of consumed power from the grid in a month (Cg
T) is 

determined by Eq. (21). 

Power cost of grid=Fixed cost + (Semi − fixed cost) + Varying cost

+ Penalty  

Cg
T =
{

Pg,kVA
max ∗ 0.8 ∗ 475+ 7000 ∗ Cg

e

}
+ {Pg,l

max∗475}

+{Ug
e ∗ Cg

e + Pg,l
max ∗ 475

}
+
{

Pg,l
extra∗475} (20)  

4. State of health modelling 

Particularly when it comes to defining the phrase "state of health" 
(SoH), the field of battery health is difficult to understand. Based on the 
unique usage circumstances of the battery, the definition of SoH can 
vary significantly. An approach for calculating cell state of health in 
terms of capacity loss as a function of temperature and SoC is put forth 
by Long Lam, a specialist in circuit-based Li-Ion battery models [31]. He 
contends that C-rates, which are frequently used to gauge battery 
discharge and charge rates, have little bearing on battery aging at room 
temperature and should not be taken into account for estimating SoH. 
Experiments support Lam’s assertion that the impact of C-rate on cell 
deterioration is outweighed by the temperature increase brought on by 
Ohmic heating. Lam’s research does not model this phenomenon 
because there are insufficient experimental data and the presumption 
that the battery management system (BMS) in an electric vehicle (EV) 
will take care of the problem, even though high C-rates can accelerate 
battery degradation at low temperatures. 

A cell will also inevitably deteriorate with time as a result of calendar 
aging. An aging model based on the Arrhenius equation is described in 
Ref. [32] and takes into account changing operating conditions over 
time, despite the fact that this type of aging is frequently less explored in 
the literature than aging caused by cycling. The 80 % limit is generally 
employed in EV applications, even if the definition of SoH may vary 
based on the particular application. A battery cell loses power as it ages 
because its internal resistance rises. Even though it might be more 
important for identifying a battery’s health when employed in hybrid 
electric vehicle (HEV) applications, this factor isn’t covered as much in 
the literature as capacity loss. Equation (21) [33] gives the definition of 
the state of health that is employed in this thesis. 

SoH=
(
1 − Sloss

/
0.2 ∗ SoCcap,i

ev

)
(21)  

Sloss =Scal
loss + Scyc

loss (22)    

(i) Cycle Aging 

A method is used to model aging-induced capacity fading and heat 
deterioration where aging parameters are consistent within each event. 
Thermal degradation is modeled using the Arrhenius equation with an 
empirical coefficient, which takes into account cell temperature, refer
ence temperature, activation energy, and gas constant. An average state 
of charge over event I, the state of charge normalized deviation, and 
model parameters are all included in the empirical coefficient. Equation 
(23), which is calculated, is utilized to determine cycling-induced ca
pacity fade. 

Scyc
loss =

∑n

t=1

{
∝1ΔSoCte(∝2SoCmean) +∝3e(∝4ΔSoCt)

}
e

{

− ∂
r

(

1
Tt
− 1

Tref

)}

Ct (23)    

(ii) Calendar Aging 

Here, a span of time is referred to as an event. 1000 s have been 

Table 1 
Structure of grid tariff.  

Power Range Cost (Rs.) Tariff category 

0 to 80 % of Pg,kVA
max Pg,kVA

max ∗ 0.8 ∗ 475 Fixed price 

80 to 100 % of Pg,kVA
max Pg,l

max ∗ 475 Semi-Fixed price 

> 100 % of Pg,kVA
max Pg,l

max ∗ 475+ Pg,l
extra ∗ 475 With penalty price 

0 to 7000 kWh 7000 ∗ Cg
e Fixed price 

> 7000 kWh Ug
e ∗ Cg

e Variable price  
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arbitrarily chosen as the ad hoc value for each simulation because it 
seems to adequately reflect temperature and state of charge dynamics. 
To establish a suitable event time and assess whether there are better 
triggers for events than just time, such as SoC (Eq. (24)), it would be 
more appropriate to carry out experimental testing on battery cells. 

dScal

dt
= μ(T, SoC)

{
1 + Scal(t)

/
Scap
}θ (24)  

μ(T,SoC)= β1e

{

−
e1
r

(

1
T−

1
Tref

)}

SoC + β2e

{

−
e2
r

(

1
T−

1
Tref

)}

(25)  

dScal = change in calendar life  

5. Proposed energy management strategy 

Fig. 1 displays the chosen energy management technique. The 
network power losses can be calculated as "Energy Input at the Bus 
(kWh)-Actual Energy Billed (kWh))/Energy Input (kWh) x100". Addi
tionally, the load factor is calculated as "average load over a specific 
time period divided by peak load simultaneously." Increasing the load 
utilization factor reduces energy losses, hence in our work, we concen
trate on this in terms of load flattening. We suggested an innovative and 
practical approach to energy management in MGs enhanced by grid 
support. By utilizing RES and EV storage, the main goal is to reduce the 
MG’s reliance on the grid. The three unique stages of our suggested 
EMS’s operation are OAES, OPF, and RER. We use three widely used 
techniques for communication channel power allocation optimization to 
achieve OAES. Based on OAES, OPF is gained by resolving a MOOP with 
two goals in mind: to reduce voltage variation and network power loss. 
With the use of this method, we can compute the Pareto-front’s ideal 
power output from each fleet for each time interval (t). 

The proposed EMS is designed to divide a day into 96 times (t), and 
the expected load and RES are used to determine how much storage is 
required (kWh/t). We determine the required amount of storage as well 
as the charging and discharging temporal zones. The main objective of 
this EMS is to accomplish "load flattening," which will lessen the MG’s 
dependence on the grid. The data we have obtained from the fuzzy rule 
base is used to train an intelligent CNN in the final step of our EMS 
strategy. This CNN comprises four decision factors as inputs and outputs 
a ranking of the EV. The main goals of this stage are to reduce battery 
deterioration and increase its capacity for MG support. The main goals of 

this stage are to reduce battery deterioration and increase its capacity for 
MG support. Our work includes numerous case studies to analyse the 
effectiveness of the proposed EMS, which we have implemented in a 
MATLAB-based smart grid configuration with heterogeneous entities. 
The flowchart (Fig. 2) shows the proposed approach’s entire flow dia
gram for ease of comprehension. 

6. Optimal allocation EV storage 

The following three strategies have been used to achieve OAES after 
taking into account the energy required in each zone’s intervals and the 
maximum available/useable energy from EVs in that zone. In order to 
limit the deviation from the certified maximum demand from the grid 
mains, we first define zones and intervals as well as the amount of 
power/energy required from EVs. Figs. 3–5 show the real load demand 
profile as well as the aforementioned power energy requirements for 
EVs. The best quantity of energy that may be used from EVs in the 
allotted period has been determined for each zone using the three 
optimization approaches. OPA will be selected for each fleet at the given 
time interval after OAES is determined for the specified time interval. 

6.1. Iterative Water-Filling Algorithm (IWFA) 

To maximize the overall utilization of EV storage, the Iterative 
Water-Filling Algorithm [34] is a strategy used to increase EV storage 
distribution among various intervals in the given zone. The water level is 
first estimated by the algorithm, which then iteratively updates it until 
convergence. Each interval’s energy allocation is represented by the 
water level, and the intervals with higher capacity receive more energy. 

6.1.1. Pseudo-code for the iterative water-filling algorithm  

1 Initialize the water level λ to a small positive number  
2 Set a convergence threshold ϵ  
3 While not converged do:  

a Compute the capacity of each interval as a function of λ  
b Sort the intervals in decreasing order of capacity  
c Compute the water level λ as a function of the sorted intervals  
d If |λ_new - λ_old| < ϵ, exit the loop  

4 Allocate energy to each interval proportional to its water level 

Here, the water level or energy allocation is denoted by λ, while the 

Fig. 1. Block diagram of Micro Grids.  
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Fig. 2. Flowchart representation of proposed EV control strategy for MG EMS  
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Fig. 2. (continued). 

Fig. 3. Comparison of actual power demand max demand from the main grid.  
Fig. 4. Power need from EVs.  
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convergence threshold is denoted by ϵ. Each interval’s capacity is 
calculated as a function of λ, and the intervals are then arranged in 
decreasing order of capacity. The algorithm then iterates until conver
gence, updating the water level λ depending on the sorted intervals. And 
finally, energy is distributed proportionally to each interval’s water 
level.  

(ii) genetic programming (GP) 

Genetic operators like mutation and crossover are used to evolve the 
population over several generations in genetic programming, which has 
as its fundamental premise the creation of a population of potential 
solutions (referred to as "individuals") for a problem. Every individual in 
the population represents a potential solution to the problem, and each 
one’s fitness is assessed according to some objective function that gauges 
how well it resolves the issue. We must first specify the individual rep
resentation and the fitness function before we can employ genetic pro
gramming for energy allocation. The fitness function gauges the system 
performance in this scenario where the person represents the energy 
allocated to each interval. 

6.1.2. Pseudo code for energy allocation using genetic programming 
Define the representation of a person’s chromosomes, such as a bi

nary string where each gene reflects the energy allotted to a particular 
interval.  

1 Initialize: Create a random population of individuals with binary 
chromosomes representing energy allocation intervals.  

2 Evaluate Fitness: Determine fitness values for each individual in the 
population. 

6.1.3. Repeat until convergence  

a Selection: Choose parents via tournament selection.  
b Reproduction: Generate offspring using genetic operators (mutation 

and crossover).  
c Fitness Evaluation: Assess the fitness of the offspring.  
d Replacement: Replace the weakest individuals in the population with 

the offspring. 

7. Result: return the best individual (highest fitness) as the 
energy allocation solution 

To develop a comprehensive algorithm, many details (such as se
lection and genetic operators) would need to be filled in. The fitness 
function and chromosome representation would also need to be adjusted 
for the particular zone under consideration. 

7.1. Robust optimization (RO) 

The objective is to distribute energy among different intervals in a 
way that maximizes the amount of energy used by EVs overall while 
satisfying energy consumption and capacity limits. resistant optimiza
tion [35], which takes into consideration the uncertainty in interval 
circumstances and offers a solution that is resistant to variations in these 
variables, is one method for overcoming this challenge. 

7.2. Pseudo code for energy allocation using robust optimization  

1 Initialize parameters: uncertainty set, decision variables, constraints, 
objective function.  

2 Define uncertainty scenarios considering variations in demand, 
supply, or other factors.  

3 For each scenario in the uncertainty set:  
a) Formulate and solve the robust optimization problem with the 

given scenario.  
b) Store the obtained solution for the current scenario.  

4 Evaluate the worst-case scenario solution, considering the most 
adverse outcome.  

5 While worst-case solution does not meet constraints:  
a) Adjust uncertainty set or other parameters to increase robustness.  
b) Recalculate worst-case scenario solution.  

6 Return the final robust optimal solution for energy allocation. 

8. MOOP formulation for OPA 

In this section, two objectives min(ploss) and minimum min(∇V) are 
formulated as MOOP problems that can be solved using PSO. Here, we 
are given a range of OPA solutions from which the MG operator may 
select one. It is expected that fleets and DGs are positioned strategically 
throughout the network. Power loss is still significantly influenced by 
the quantity of power that is exchanged between the fleet and grid/MG, 
though. By determining OPA for each fleet based on which EVs will 
participate in grid support, this issue is addressed. 

8.1. Minimize power loss 

Fig. 6 shows a single-line diagram with two buses. Here, the goal is to 
lower the distribution network’s overall active power dissipation, which 
is provided by Eq. (26). Intelligent CNN for EV Recommendation (RER) 
is shown in Fig. 7). 

F1 =min (Ploss) (26)  

where Ploss represents the system’s overall active power loss, which can 
be calculated as follows [42]: 

Fig. 5. Energy needs from EVs.  

Fig. 6. Single-line bus diagram.  
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Ploss =
rij

ViVj

(
∑N

i=1

∑N

j=1
cos
(
δi − δj

)(
PiPj − QiQj

)
+ sin

(
δi − δj

)
∗
(
QiPj

− PiQj
)
)

(27)  

δi − δj = phase angle difference
b
w

bus i plus j  

Vi,Vj = voltages at i and j  

Pi,Pj,Qi,Qj = active plus reactive powers at i & j  

In this section, two MOOP-based objectives min, (Ploss) and min, ΔV, that 
can be handled with PSO are introduced. The outcome of this procedure 
is a collection of OPA solutions from which the MG operator may choose. 
Fleets and Distributed Generations of DGs are presumptively positioned 
in the network’s most advantageous areas. The amount of power 
exchanged between fleets and the grid or MG still has a significant 
impact on power loss, though. The OPA for each fleet is established 
based on which EVs will engage in grid support in order to handle this 
issue. While ensuring that EVs effectively participate in grid support 
activities, power loss and voltage fluctuations in the MG system can be 
reduced by optimizing the power allocation approach. 

8.2. Minimize voltage deviation 

This objective function is to enhance the voltage profile expressed as: 

F2 =min (ΔV)=min

(
∑N

i=1
(Vi − Vrated)

2

)

(28)  

Vrated is the rated voltage (1.0 p.u.) and Vi is the voltage magnitude at 
bus i, where V is the overall voltage variations. The derived power flow 
equations are, 

Pg,i − Pl,i = |Vi|
∑N

j=1
Yi,jVj cos

(
δi − δj − θi,j

)
(29)  

Qg,i − Ql,i = |Vi|
∑N

j=1
Yi,jVj sin

(
δi − δj − θi,j

)
(30) 

The extreme useable power for V2G must be kept below the total sum 
of the maximum power rates of all EVs, it must be ensured. 

Pt,ch
ev ≤

∑k

i=1
Pt,i,c

ev (31)  

Pt,dc
ev ≤

∑l

i=1
Pt,i,dc

ev (32) 

Grid apparent power grid should not exceed its verified/max de
mand, according to a constraint. 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Pt
grid + Qt

grid

)2
√

≤ Pg,kVA
max (33)  

Pt
grid,Q

t
grid are active and reactive powers from grid mains at time interval 

‘t’. 
Constraint on fuel cell power: Pt

fc should lie between high plus low 
charge limits. 

Pt
fc ≤

∑x

i=1
Pi,max

fc (34)  

Pt
fc ≥

∑x

i=1
Pi,min

fc (35) 

Pi,max
fc = Maximum power output from ith FC. 

Pi,min
fc = Minimum power output from ith FC. 

Battery level restrictions: Considering battery deterioration, it is 
preferable to maintain the battery level in a specific manner to ensure 
battery longevity. 

ФminSi,cap
ev ≤ St,i

ev⩝t € {1…96} (36)  

St,i
ev ≤ ФmaxSi,cap

ev ⩝t € {1…96} (37)  

Here, Si,cap
ev = Full capacity if ith battery. Фmin and Фmax are low, plus a 

high percentage of battery levels to be continued to maximize battery 
life. 

Limits on EV power: It is important to keep in mind that EV power 
charges cannot exceed the battery SoC limits in the time allotted. 

1
μdc

Pt− 1,i,dc
ev dt≤(St− 1,i

ev − ФminSi,cap
ev

)

;⩝t € {1…96} (38)  

μchPt− 1,i,ch
ev dt ≤

(
ФmaxSi,cap

ev − (St− 1,i
ev

)
(39)  

Фmin,Фmax minandmaxSoClimits  

8.2.1. Pseudo code for OPA using PSO  

1 Initialize swarm with random power allocation values for EV fleets.  
2 Calculate line losses for each particle in the swarm.  
3 Set pbest for each particle to its initial position.  
4 Set gbest to particle with lowest line losses. 

Fig. 7. Block diagram of CNN for RER.  
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5 Set max_iter and inertia weight w.  
6 Repeat for each iter from 1 to max_iter:  

a) For each particle i:  
i Update velocity vector:  

- Calculate cognitive component (c1 * rand() * (pbest_i - 
pos_i))  

- Calculate social component (c2 * rand() * (gbest - pos_i))  
- Update velocity (vel_i = w * vel_i + cognitive + social)  

ii Update position vector:  
- Update position (pos_i = pos_i + vel_i)  
- Enforce power limits of the fleets  

iii Calculate line losses for updated position.  
iv If new line losses are lower than previous:  

- Update pbest_i to new position  
- If new line losses are lower than gbest:  
- Update gbest to new position  

b) Update inertia weight (w = w_max - ((w_max - w_min) * iter/ 
max_iter))  

7 Return gbest as the optimal power allocation (OPA) among fleets. 

9. RER using an intelligent CNN 

DoD, STP, PoP, and Laxity are decision factors for RER that are inputs 
to the intelligent CNN. We discuss these choice variables and their sig
nificance in determining RER in this section. We take the effect of DoD 
and STP into consideration to account for battery longevity. In this case, 
STP denotes the possibility of a transition between V2G and G2V. The 
DoD and STP will take care of battery longevity, therefore merely taking 
these two into account when making decisions will diminish the use
fulness of using EV storage for MG support. PoP and Laxity, on the other 
hand, will act in the reverse manner and favour MG to maximize con
sumption. Leverage battery degradation is caused by the effects of 
increasing DoD and SoC. It is not advisable for an EV with a higher STP 
value to participate in MG support activities as this causes battery 
damage from frequent transitions. As a result, the RER value increases 
and the preference decreases. This can also be examined for the alter
native situation. 

In order to prolong the life of the battery by reducing the number of 
transition cycles, the value of RER regarding STP will be chosen. PoP is 
calculated using historical EV grid support participation trends as well 
as correlations between the other factors. Laxity mimics an EV’s 
adaptable time frame for participating in grid support. These two 
decision-making factors aid in maximizing the use of EV storage, and in 
this situation, the RER is exactly proportionate. In this part, the esti
mation of STP and PoP is covered. Eq. (1) mentioned in Section 2 is used 
to estimate the value of Laxity. By mapping inputs to outputs (rank) 
based on the prior description of how each input affects the grid support 
and battery health, we establish a fuzzy rule basis. The rule base was 
developed with the intuitive notion of mapping as if the MG operator 
were to choose the EVs in the current time and situation. Later, a syn
thetic data set created using this fuzzy rule basis is utilized to train an 
intelligent CNN for RER. Table 1 (training data for CNN) has been 
collected from the sample fuzzy rule base provided below [36] using 
artificial training data.  

9.1. Intelligent CNN for EV recommendation (RER) 

Traditionally, intelligent CNNs [37] have been used for 
image-processing applications including object detection and categori
zation. Their architecture, however, may be modified for several kinds 
of data, including time series and text data, making them appropriate for 
a variety of applications. Intelligent networks must be translated into the 
proper format in order to be used with non-image input. For example, 
time series data can be turned into a 2D array by treating each data point 
as a pixel and each time step as a row, while text data can be converted 
into a 2D matrix by expressing each word as a vector and organizing 

Table 2 
Sample data set for CNN training.  

S. N0 DoD Laxity PoP STP rank 

1 0.600 0.795 0.823 0.025 0.145 
2 0.614 0.316 0.099 0.797 0.472 
3 0.592 0.514 0.086 0.619 0.503 
4 0.062 0.256 0.682 0.159 0.010 
5 0.012 0.249 0.165 0.514 0.698 
6 0.189 0.765 0.844 0.838 0.809 
7 0.956 0.480 0.350 0.429 0.050 
8 0.684 0.285 0.841 0.863 0.990 
9 0.736 0.274 0.234 0.058 0.958 
10 0.558 0.988 0.695 0.404 0.569 
11 0.225 0.713 0.742 0.834 0.207 
12 0.278 0.818 0.855 0.202 0.044 
13 0.325 0.548 0.750 0.887 0.964 
14 0.272 0.962 0.043 0.908 0.266 
15 0.328 0.145 0.912 0.635 0.663 
16 0.555 0.949 0.830 0.350 0.841 
17 0.194 0.301 0.945 0.363 0.474 
18 0.889 0.426 0.771 0.838 0.272 
19 0.059 0.714 0.665 0.933 0.611 
20 0.106 0.963 0.008 0.323 0.528  

Table 3 
Sample of past data of EV participation in V2G/G2V/IDL.  

S. No SoC L DoW T S t 

1 0.82 0.15 0.40 0.49 0 
2 0.87 0.14 0.08 0.49 0 
3 0.08 0.87 0.24 0.34 1 
4 0.40 0.58 0.12 0.90 1 
5 0.26 0.55 0.18 0.37 − 1 
6 0.80 0.14 0.24 0.11 − 1 
7 0.43 0.85 0.42 0.78 0 
8 0.91 0.62 0.05 0.39 1 
9 0.18 0.35 0.90 0.24 − 1 
10 0.26 0.51 0.94 0.40 0  
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them according to their order in the text. Following data transformation, 
a CNN can be trained utilizing similar methods to those used for picture 
data. In order to produce predictions or choices based on the input, the 
CNN will learn to recognize patterns and characteristics in the data. An 
intelligent CNN, for instance, can be used to analyse sensor data from a 
manufacturing facility to find patterns that point to equipment failure or 
service requirements. On the basis of real-time sensor data, the CNN can 
be trained using historical sensor data to forecast when maintenance is 
necessary. By converting the data into an appropriate format and 
teaching the CNN to spot patterns and features in the data, CNNs are a 
flexible tool that may be used for selection criteria based on non-image 
data. This broadens the variety of uses for CNNs beyond the conven
tional image processing tasks listed in Table 2. 

9.2. Probability of participation 

Through V2G and G2V features, historical data on EV participation 
in grid support activities can be used to assess the probability of 
participation (PoP). The history of owner involvement in grid support 
has been taken into consideration in this study to identify patterns of 
behavior that correlate with various parameters, including SoC, laxity 
(L ), Day of the Week (DoW), and time interval (t). With the help of this 
information, the probability that an EV is in the V2G/G2V, or IDL states 
may be calculated. 

9.2.1. Correlation 
The input data, which consists of SoC, L, DoW, and t, has been 

associated with the state in Table .3 in order to estimate PoP. In this case, 
the EV status, S t, is either − 1 for V2G, +1 for G2V, or 0 for IDL. The 
correlation has been utilized in this section to assess the link between the 
variables listed in Table 2. Correlation aids in decision-making by 
assessing the relationship between the choice and input variables. We 
can maximize the use of EV storage in this situation by knowing the 
feature behavior of the EV owner (PoP). A numerical indicator of how 
closely the variables are related is the correlation coefficient (r). The 
formula is given by Eq. (40), and the Pearson Correlation Coefficient is 
used to assess the linear relationship between the data variables. These 
coefficients (r), which are displayed in Table .4, were extracted using 
MS-Excel and the data analysis tool bundle. The value of r falls between 
− 1 and 1, where − 1 denotes pure negativity and +1 denotes pure 
positivity. The correlation between the variables is zero, or 0. The 
training data for ANFIS created for EV prioritizing is prepared using the 

correlation between the factors to map the input and decision variables. 
On the other hand, if we want to swap out ANFIS for a fuzzy controller to 
estimate the PoP, the same can also be utilized to construct the fuzzifi
cation rule basis. 

ṙ=
{n
∑

(xy) − (
∑

(x) ∗
∑

(y))}
{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑

x2 − (
∑

x)2
√ }

−

{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n ∗
∑

y2 − (
∑

y)2
√ } (40)  

9.3. PoP estimation using ANFIS 

With four input variables and one output (St) in this method, ANFIS 
is trained using the data in Table 5. Five input membership functions 
plus 1-output membership function are employed in the Sugeno-type 
fuzzy inference system (triangular. All parameters for input and 
output are transformed into per-unit values using Equation 6.1. The 
membership function values in use range from 0 to 1. The hybrid 
training technique used in this work has 100 epochs and a 0.005 error 
tolerance. The ANFIS is trained using 90 % of the training data provided 
in Table 1 in this study, with the remaining 10 % being used for testing. 
In Table 4, the ANFIS’s operation is shown. The value of PoP in Table 4 
ranges from − 1 to 1. Here, ’0′ denotes the idle state of the EV, ’-ve’ 
denotes the likelihood of G2V, and ’+ve’ denotes the probability of V2G 
by the given EV during the given time frame. 

9.4. STP estimation 

It is advised to extend the battery state for the alternative periods, 
prioritizing maximal EV storage consumption while reducing mode 
transitions, to optimize quick changes between V2G and G2V and 
minimize battery deterioration is shown in Fig. 8). To do this, the SoC, 
current mode, zone transition probability, zone type, and EV availability 
probability are combined to determine the EV utility rate for the 
following two intervals. As a result, the EV experiences three states at 
each time interval, with the likelihood of a state shift as shown in Fig. 9. 
Fig. 9 displays the likelihood of zones transitioning across 96 intervals.  

(a) Transition probability ‘CH →CH’, pt
11: 

To estimate the STP for the next interval we formulate the probabi
listic equations that use the following terms. 

pch,t+1
j,SoC = probobility of going to be in charging mod at t + 1  

pdc,t+1
j,SoC = probobility of going to be in discharging mod at t + 1  

pt+1
11 = probobility of going to be in discharging mod at t

+ 1′given that the EV is in charging mode during ’t’  

Here, 1, 2, and 3 represent charging, discharging, and idle modes 

Table 4 
Pearson correlation coefficients.  

ṙ SoC L DoW t S t 

SoC 1.00     
L − 0.58 1.00    
DoW − 0.50 − 0.04 1.00   
T − 0.04 0.38 − 0.22 1.00  
S t 0.07 0.51 ¡0.39 0.52 1.00  

Table 5 
Performance of ANFIS to estimate PoP.  

S. No SoC L DoW t PoP 

1 0.77 0.44 0.20 0.68 0.5480 
2 0.40 0.83 0.41 0.50 0 
3 0.81 0.77 0.75 0.19 0 
4 0.76 0.17 0.83 0.50 0 
5 0.38 0.86 0.79 0.15 0 
6 0.22 0.99 0.32 0.05 0 
7 0.79 0.51 0.53 0.85 0 
8 0.95 0.88 0.09 0.56 0 
9 0.33 0.59 0.11 0.93 0.5711 
10 0.67 0.15 0.14 0.70 0.0120  

Fig. 8. Chances of state transition for an EV.  
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respectively. So, pt+1
12 , pt+1

31 and so on can be understood what they 
represent. 

pt+1
j,avail = available probability of EV at t + 1 

pt+1
z = zone transition probability at t+ 1. These terms are also rep

resented by ‘t’ interval. 

Pt+1
j,1 =

Pch,t+1
j,SoC ∗ Pt+1

j,avl

Pt
avl

=

(
1 −

(
SoCt

j + ΔSocj

))

Pt
avl

(41) 

Here, pt+1
z is the probability of zone change over or zone transition 

either from charging zone to discharging zone or vice-versa. The vector 
transition probabilities are defined by the vector 
pz = [ p1

z p2
z p3

z p4
z p5

z ……….p96
z ] as per Fig. 1. 

Pt+1
11 =

(
1 −

(
SoCt

j + ΔSocj

))
∗ Pt+1

avl

Pt
avl

∗
(
1 − Pt+1

z

)
(42)  

Where ΔSoCj =
Prate

ev,j ∗ηΔt
Ej

.  

(b) Transition probability ‘CH → DC’, pt
12: 

Pt+1
j,2 =

Pch,t
SoC ∗ Pt+1

avl

Pt+1
avl

=

((
SoCt

j + ΔSocj

)
∗ Pt+1

avl

)

Pt
avl

(43) 

Here, the transition probability is determined using Eq. (44) with the 
use of zone transition probability. 

Pt+1
1,2 =

(
1 −

(
SoCt

j + ΔSocj

))
∗ Pt+1

avl

Pt
avl

∗
(
Pt+1

z

)
(44)    

(c) Transition probability ‘CH → IDL’, pt
13: 

Pt+1,idl
j,3 =

(
SoCt

j +ΔSoCj

)
(45)  

Pt+1,idl
j,13 =

(
SoCt

j +ΔSoCj

)
∗
(
1 − Pt+1

z

)
(46)  

Pt+1,idl
j,13 =

((
SoCt

j +ΔSoCj

)
− Zt+1

12

)
∗
(
1 −

(
1 − Zt+1

12

)
∗ Pt+1

z

)
(47)  

Here, Zt+1
12 = 1; if zone changes from CH to DC. 

Zt+1
12 = − 1; if zone changes from DC to CH. 

Zt+1
12 = 0; if there is no zone transition.  

(d). Transition probability ‘DC → CH’, pt
21: 

Pt+1
j,1 =

Pdc,t
soc ∗ Pdc,t

avl

Pt
avl

=

(
1 −

(
SoCt

j − ΔSocj

))

Pt
avl

∗
(
Pt+1

avl

)
(48)  

Pt+1
21 =

(
1 −

(
SoCt

j − ΔSocj

))
∗ Pt+1

avl

Pt
avl

∗
(
Pt+1

z

)
(49)    

(e) Transition probability ‘DC →DC’, pt
22: 

Pt+1
j,u,2 =

Pdc,t+1
j,soc ∗ Pt+1

j,avl

Pt
avl

=

((
SoCt

j − ΔSocj

))

Pt
avl

∗
(
Pt+1

avl

)
(50)  

Pt+1
22 =

((
SoCt

j − ΔSocj

))
∗ Pt+1

avl

Pt
avl

∗
(
1 − Pt+1

z

)
(51)    

(f) Transition probability ‘DC → IDL’, pt
23: 

Pt+1,idl
j,3 =

(
1 −

(
SoCt

j − ΔSocj

))
(52)  

Pt+1,idl
j,23 =

(
1 −

(
SoCt

j − ΔSocj

))
∗
(
1 − Pt+1

z

)
(53) 

If the zone transition is from DC→ CH, the probability that EV will be 
in an idle state cannot be directly realized using (54) 

Pt+1,idl
j,23 =

(
1 −

(
SoCt

j − ΔSoCj

)
+Zt+1

12

)
∗
(
1 −

(
1 − Zt+1

12

)
∗ Pt+1

z

)
(54)    

(g) Transition probability ‘IDL → CH’, pt
31.  

If the next zone transition is DC→CH:                                                      

The transition probability is given by (55) if the zone transition is 
DC→CH. Zt+1

12 = − 1. 

Pt+1,idl
j,23 =

( (
Zt+1

12 +SoCj
))

∗
(
1 −

(
1 − Zt+1

12

)
∗ Pt+1

z

)
(55) 

If the next zone transition is CH→DC: 

Pt+1,idl
j,31 =

( (
Zt+1

12 − SoCj
))

∗
( (

1 − Zt+1
12

)
∗ Pt+1

z

)
(56)    

(h) Transition probability ‘IDL→ DC’, pt
32: 

If there is a zone transition from CH to DC, then the transition 
probability from idle to discharging depends on {SoCt

j}. 
The transition probability is given by (57) if the zone transition is 

CH→DC. Zt+1
12 = 1. 

Pt+1,idl
j,32 =

( (
1 − Zt+1

12 +SoCj
))

∗
(
1 −

(
1 − Zt+1

12

)
∗ Pt+1

z

)
(57) 

Fig. 9. Zone transition probabilities over 96 intervals.  
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Fig. 10. Line diagram of MG.  

Fig. 11. Comparison of three methods for OAES in terms of deviation from max demand.  
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The shift from idle to discharging mode won’t occur if the following 
zone transfer is from DC to CH because it is preferable to use EVs in 
charging mode in the CH zone. It is evident that the EV will not be used 
in discharging mode despite having some SoC of 0.8 at the CH zone. 
Consequently, in this scenario, the transition probability will be equal to 
0. 

Pt+1,idl
j,32 =

( (
Zt+1

12 + SoCj
))

∗
( (

1+Zt+1
12

)
∗ Pt+1

z

)
(58)  

Where Zt+1
12 = − 1.  

(i) Transition probability ‘IDL →IDL’, pt
33. 

If there is no zone transition, then the EV will remain to stay in the 
idle position in t+1 if it was in the idle position in interval t. If the next 
zone transition is CH→DC: 

If there is no zone transition, i.e., pt+1
z = 0, then, pt+1

33 = 1. 

Else if, pt+1
z = 1, pt+1

33 =
(
1 − Pt+1

32

)
(59)  

Here, pt+1,idl
32 is the transition probability from IDL→DC 

Else if, pt+1
z = 1, pt+1

33 =
(
1 − Pt+1,idl

31
)

(60)  

Here, pt+1,idl
31 is the transition probability from IDL→DC. 

The (35) represents the transition probability from i → j after the 
next two intervals i.e., at the time (t+1) and that of at (t+2) the tran
sition probability is represented by (37). 

pt+1
ij =

∑3

k=1
Pch

ik Pch
kj (61)  

pt+2
13 =

∑3

k=1

(
Pch

ik

∑3

l=1
Pch

kl P
ch

lj
(62)  

10. Results and discussions 

The suggested course of action is put into action in the MG scenario 
using a variety of energy sources, including solar PV, wind, fuel cells, 
and EV fleets. It is implemented in a smart grid simulation environment 
powered by MATLAB [38] (Fig. 10). The suggested EMS has been 
examined in several circumstances in this section. The main conclusions 
will be more focused on the goals of min, ΔP, ΔV, grid energy cost, and 
EV battery degradation. Results from various examples have been used 
to examine the effects of each stage in the proposed EMS on the afore
mentioned objectives. The highest demand that is agreed upon from the 
main grid is 850 kVA apparent power, in our opinion. Note that we did 
not consider the best deal for the highest demand from the grid, thus this 
number is not optimal. However, we chose three situations with 
maximum demands of 800 kWh, 850 kWh, and 900 kWh for a random 
comparison. According to the power pricing structure in India, the cost 
estimates and penalty restrictions have been explained in Section 2. 

Fig. 12. Comparison of three methods for OAES in terms of grid power.  

Fig. 13. Pareto front for selection of OPA.  
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10.1. Comparison of OAES 

Three distinct techniques have been used to distribute the energy 
throughout the intervals. Here, we contrast these three approaches 
based on the actual power being exchanged between MG and EVs (in 
Fig. 3) and the grid power divergence from 850 kVA (Fig. 11). According 
to the discussion in section 3, the expected energy demand (MWh) in 

seven zones is: 1.6, − 0.14, 0.07, − 1.5, 0.06, − 0.25 and 1.08. The actual 
energy distribution (MWh) determined by OAES using IWFA is as fol
lows: 1.01, − 0.03, 0.06, − 0.42, 0.05, − 0.03, and 0.38. In this case, - 
denotes the charging zone and +, the discharging zone. According to the 
comparison analysis, the divergence from 850kVA is predicted to be at 
its lowest point when we utilize IWFA, followed by RO, and at its highest 
point when we use GP. The same information is shown in Figs. 11 and 
12, where three techniques have been contrasted in terms of the quantity 
of power coming from EVs that is being transferred. 

10.2. Impact of OPA selection 

In continuation to section 4 from which we obtain the Pareto-front 
solution for OPA, here we present the analysis part on how the selec
tion of OPA will impact the voltage and grid power deviation. It can be 
observed from Fig. 14 for OPA-1, OPA-2, …. … and OPA-6. The process 
of selecting the OPA from the Pareto-front for power loss and voltage 
deviation was thoroughly examined. The proposed solutions (OPAs from 
the pareto front) were compared by selecting different OPA options from 
the Pareto-front, as shown in Fig. 13. As the power transactions between 
the fleet and grid can cause voltage variation, it is essential to set a 
power transaction limit to control this deviation. As shown in Figs. 14 

Fig. 14. Comparison of the impact of multiple OPA selections on grid power profile.  

Fig. 15. Comparison of impact of multiple OPA selection on Voltage profile at 
the fleet bus. 

Table 6 
Cost comparison among EMS, OPA, and RER.  

Max Demand from Grid (% cost) 800kVA 850kVA 900kVA 

Without EMS 100 100 100 
With EMS 87.6 88 89.5 
Without OPA 91 91.8 93 
Without RER 90 91 92  

Fig. 16. Cost comparison among EMS, OPA, and RER.  

Fig. 17. Cost comparison among EMS, RER, and decision variables.  

Table 7 
impact of individual decision variable of RER on cost variation.  

Max Demand from Grid (% cost) 800kVA 850kVA 900kVA 

Without EMS 100 100 100 
With RER 87.6 88 89.5 
Without RER 90 91 92 
DoD þ STP 86 85 86.5 
Laxity Pop 89 90 91  
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and 15, choosing OPA from the Pareto-front significantly affects voltage 
deviation and load flattening. Additionally, using this strategy makes it 
easier to regulate both frequency and voltage. Fig. 15 shows the voltage 
variations and illustrates the effectiveness of the suggested method for 
controlling the voltage deviation. Additionally, the impact of varying 
charging and discharging rates on EVs was examined while accounting 
for battery degeneration. It’s crucial to remember that this approach 
assumes fixed power EVs for V2G G2V power transfers. 

10.3. Grid power cost 

In this part, using Fig. 17 and Table .6, we analyse the variation in 
grid power costs under various conditions, including those with and 
without EMS, RER, and OAES. Fig. 2 shows the effects of each choice 
variable in RER. In order to compare costs, we use the cost at the 
maximum demand of 850 kVA (100 %) as the baseline. OPA’s impact is 
more significant than RER’s since RER only weighs battery longevity in 
half (Fig. 16). It is because one of the goals of the MOOP, for which OPA 
is chosen, is to minimize losses. However, the choice of OPA from the 
Pareto-front solution set will directly affect cost variation. Cost reduc
tion results from a compromise on ΔV, and vice versa. Fig. 17 shows how 
the RER’s individual decision variable affects cost variation. The similar 
thing can be seen in Table 7, too. While STP and DoD will almost 
certainly be in the exact opposite situation, decision variables Laxity and 
PoP will demonstrate a direct impact on costs. In the worst-case sce
nario, cost is increased if we only consider DoD & STP as the choice 
variables for RER. In the best-case situation, cost is minimized if only 
DoD & STP are the decision variables. The cost is moderate and falls in 
between the situations of RER and without EMS when all four choice 
variables are taken into account. 

10.4. Impact of RER and decision variables 

The impact of V2G plus G2V on battery life is explored in this section, 
as it was in Section 2. It is commonly known that the battery SoH de
pends on a number of variables, although an accurate estimate is neither 
predicted nor possible. Here, we take into account the battery’s deteri
oration in terms of both calendar and cycle lifetimes. We estimate the 
capacity deterioration using the equations Eq. (39) and (40), despite the 
fact that doing so is highly difficult and impossible. In contrast to Laxity 
and PoP, decision variables (STP and DoD) in RER will directly affect 
capacity fading in this situation. In Fig. 18, we examine the capacity 
fading over the cycle and calendar file for four situations (with RER, 

without RER, with DoD & STP, and without DoD & STP). In the worst 
case situation, capacity fading is leveraged if DoD & STP are not taken 
into account while making decisions for RER. In the best case scenario, 
DoD & STP are the only factors taken into consideration. When all four 
RER decision variables are taken into account, the fading is moderate 
and less severe than the worst-case scenario, as shown in Fig. 18 

11. Conclusion 

An innovative EMS for MG with grid support was suggested in the 
article. The goal was to use RES and EV storage to lessen reliance on the 
grid. The proposed EMS had three execution phases: OAES, OPF, and 
RER. The estimated storage need (kWh/t) is based on the predicted 
demand and RES and is based on dividing the 24-h period into 96 time 
intervals (t). They established the required amount of storage and the 
charging and discharging time zones (G2V and V2G, respectively). The 
main goal is "load flattening," which aims to lessen the MG’s reliance on 
the grid. Three approaches were first used to obtain OAES, but the 
OAIWF algorithm performed the best. Based on OAES, OPF was obtained 
for each "t" by resolving a MOOP with the dual goals of reducing voltage 
variation and network power loss. The OPF for the fleet was derived for 
each "t" from the Pareto-front, where we took into account a solution 
that improves performance while still achieving both MOOP goals. The 
CNN was trained using the information obtained from the fuzzy rule 
base in the third stage, which comprised four decision variables as inputs 
and the rank of EV as an output. During this phase, the key goals were to 
avoid battery deterioration and optimize its use for MG support. A 
MATLAB-based smart grid system with heterogeneous entities was used 
to implement the suggested EMS, and various case studies were exam
ined. Different combinations of CNN inputs have been used to study the 
effects of decision variables in RER. It has been researched how the 
Pareto-front choice affects voltage and power loss. 
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