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A B S T R A C T

Objective: Multimorbidity, particularly diabetes combined with hypertension (DCH), is a signifi-
cant public health concern. Currently, there is a gap in research utilizing machine learning (ML)
algorithms to predict hypertension risk in Chinese middle-aged and elderly diabetic patients, and
gender differences in DCH comorbidity patterns remain unclear. We aimed to use ML algorithms
to predict DCH and identify its determinants among middle-aged and elderly diabetic patients in
China.
Study design: Cross-sectional study.
Methods: Data were collected on 2775 adults with diabetes aged ≥45 years from the 2015 China
Health and Retirement Longitudinal Study. We employed nine ML algorithms to develop pre-
diction models for DCH. The performance of these models was evaluated using the area under the
curve (AUC). Additionally, we conducted variable importance analysis to identify key
determinants.
Results: Our results showed that the best prediction models for the overall population, men, and
women were extreme gradient boosting (AUC = 0.728), light gradient boosting machine (AUC =

0.734), and random forest (AUC = 0.737), respectively. Age, waist circumference, body mass
index, creatinine level, triglycerides, taking Western medicine, high-density lipoprotein choles-
terol, blood urea nitrogen, total cholesterol, low-density lipoprotein cholesterol, and sleep dis-
orders were identified as common important predictors by all three populations.
Conclusions: ML algorithms showed accurate predictive capabilities for DCH. Overall, non-linear
ML models outperformed traditional logistic regression for predicting DCH. DCH predictions
exhibited variations in predictors and model accuracy by gender. These findings could help
identify DCH early and inform the development of personalized intervention strategies.

* Corresponding author. School of Public Health, Shanghai University of Traditional Chinese Medicine 1200 Cai Lun Road, Shanghai, 201203,
China.
** Corresponding author.

E-mail address: xianglongxu@shutcm.edu.cn (X. Xu).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e38124
Received 3 July 2024; Received in revised form 7 September 2024; Accepted 18 September 2024

Heliyon 10 (2024) e38124 

Available online 19 September 2024 
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:xianglongxu@shutcm.edu.cn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e38124
https://doi.org/10.1016/j.heliyon.2024.e38124
https://doi.org/10.1016/j.heliyon.2024.e38124
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2024.e38124&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Diabetes and hypertension are prevalent chronic diseases worldwide, with an increasing incidence. The International Diabetes
Federation anticipates a global prevalence of diabetes to reach 12.2 % (783.7 million) by 2045 [1]. From 1990 to 2019, the number of
hypertension cases surged from 650 million to 1.3 billion globally [2]. Approximately 1.28 billion adults aged 30 to 79 suffer from
hypertension worldwide [3]. China has the highest number of diabetic patients globally [4]. The prevalence and risk of diabetes
escalate significantly after the age of 45, and this trend is expected to continue as the population ages [5,6]. It is estimated that over 50
% of diabetics also have hypertension, which accelerates the progression of nephropathy and worsens diabetes symptoms [7]. Diabetes
combined with hypertension (DCH) significantly elevates the risk of cardiovascular diseases and poses a substantial socioeconomic
burden [8]. Hence, early identification and intervention of DCH is essential to improve the prognosis of patients with diabetes and
reduce the incidence of serious complications.

One of the global targets for non-communicable diseases is to reduce the prevalence of hypertension by 33 % between 2010 and
2030 [3]. Efficiently controlling hypertension among middle-aged and elderly adults with diabetes and accurately predicting DCH are
crucial for advancing toward this goal. In recent years, the advent of artificial intelligence has spurred the widespread application of
machine learning (ML) algorithms in clinical research [9]. Compared to traditional statistical methods, ML algorithms excel at
handling intricate nonlinear relationships, interactions, and multiple covariates, significantly bolstering the predictive power of the
models [10]. As such, ML algorithms can be utilized to improve prediction accuracy and support early intervention strategies, thereby
effectively managing hypertension in diabetic patients.

Despite this, there is still an absence of DCH prediction models for Chinese middle-aged and elderly diabetic patients. Previous
studies have predominantly employed logistic regression (LR) models and Cox regression methods to construct prediction models for
DCH, demonstrating good predictive performance [11–15]. Furthermore, some studies have focused on exploring predictors [16–18],
while others have reported using ML algorithms to predict DCH. For instance, a study in the United Arab Emirates successfully pre-
dicted eight diabetic complications, including hypertension, using the random forest model (AUC = 0.736) [19]. Moreover, another
study involving 164 diabetic patients in Massachusetts, United States of America, utilized liquid biomarkers to predict DCH, with the
linear discriminant analysis classifier achieving the highest accuracy rate of 61.2 % [20]. Additionally, a study based on 2080 diabetic
patients from Qingdao, China, established a DCH prediction model incorporating blood pressure as a predictor, with an AUC exceeding
0.9 [21]. Among these, two studies [19,20] were conducted in other countries, and one focused on Chinese individuals aged 12–83
years [21]. However, there has not been an ML algorithm prediction study of DCH covering the characteristics of Chinese middle-aged
and elderly adults. Additionally, research investigating gender differences in both predictors and predictive accuracy of DCHmodels is
scarce. Existing evidence suggests that men generally have higher blood pressure levels than age-matched premenopausal women,
while women often experience an increase in blood pressure after menopause [22,23]. This gender-based variation warrants further
exploration to enhance the precision and applicability of DCH prediction models.

Our study aimed to develop predictive models for DCH using nine ML algorithms: LR, adaptive boosting (AdaBoost), gradient
boosting machine (GBM), gaussian naive bayes (GNB), light gradient boosting machine (LGBM), RF, support vector machine (SVM), k-
nearest neighbor classification (KNN), and extreme gradient boosting (XGBoost). Additionally, we aimed to identify key factors
influencing DCH and explore variations in model performance and significant predictors among different gender groups. These
findings have the potential to deepen our insights into DCH pathogenesis, while also informing gender-specific personalized medical
recommendations and hypertension management strategies for diabetics, ultimately enhancing the quality of life for diabetics.

2. Methods

2.1. Study design

Participants were selected from the China Health and Retirement Longitudinal Study (CHARLS) Phase III (2015) to conduct a cross-
sectional analysis. CHARLS is a nationally representative longitudinal survey that focuses on middle-aged and older adults in China,
covering 150 county-level units, 450 village-level units, and approximately 10,000 households across the country [24]. In our study,
the dataset consisted of three components: self-reported questionnaire, physical examination, and blood biomarkers. The inclusion
criteria for participants were as follows: (1) aged 45 years or older; (2) physician-diagnosed or self-reported cases of diabetes.
Conversely, individuals with missing information regarding the prevalence of hypertension were excluded. Ultimately, 2775 diabetic
patients were included in our analysis and modeling(Fig. 1).

2.2. Predictors

Informed by expert insights and literature reviews [11,12,15], we included 23 predictors collected through questionnaires or
measurements. The self-reported questionnaire encompassed: (1) demographic factors, such as gender, age, education level, region
(east, middle, or west), and residence (urban or rural); (2) lifestyle factors, including smoking and drinking; (3) health status, including
depression, which was evaluated through the administration of the 10-item Centre for Epidemiological Studies Depression Scale
(CES-D-10) questionnaire [25], sleep disorders, and body pain; and (4) treatment information, detailing whether participants used
traditional Chinese medicine, Western medicine, or insulin for diabetes management. Additionally, the measurements included: (1)
physical examination, including body mass index (BMI) and waist circumference; and (2) blood biomarkers, including fasting blood
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glucose, glycated hemoglobin, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total
cholesterol, creatinine level, triglycerides, and blood urea nitrogen.

2.3. Definition of diabetes

In our study, the diagnosis of diabetes was established if any one of the following three criteria was met: (1) a previously physician-
confirmed diagnosis of diabetes or self-reported diabetes; (2) a fasting blood glucose level of ≥7.0 mmol/L and/or a glycated he-
moglobin level of ≥6.5 % [26]; (3) a positive response to the question, "Are you currently taking any of the following treatments to
treat or control your diabetes? Utilizing traditional Chinese medicine, utilizing Western medicine, or administering insulin injections".

2.4. Measurement of outcome

The outcomewas whether diabetic patients had comorbid hypertension. Hypertension was diagnosed based on any of the following
three criteria: (1) a confirmed physician diagnosis or self-reported hypertension; (2) a diastolic blood pressure of ≥90 mmHg and/or a
systolic blood pressure of ≥140 mmHg [27]; (3) affirmatively responding to the inquiry, "Are you currently undergoing any of the
following treatments to manage your hypertension? Utilizing traditional Chinese medicine or Western medicine".

2.5. Analysis and modeling

Statistical analysis was performed using R 4.3.1, while model development was conducted in Python 3.8. Continuous variables
were summarized using the median and interquartile range, and between-group comparisons were conducted using the Mann-Whitney
U test. Categorical variables were summarized by presenting the frequency (n) and percentage (%). We used chi-square or Fisher’s
exact test to analyze group differences. The significance level was set at a p-value of less than 0.05. For all variables with a missing rate
below 20 %, we employed two strategies to handle missing data: imputation with placeholders and interpolation using RF. Subse-
quently, we trained models using datasets processed by these two methods. Experimental results showed that datasets filled with
placeholders outperformed those interpolated using RF in model training. Therefore, to preserve the distribution of the original data,
we chose to fill in missing values with designated placeholders to represent unavailable information. During model training, missing
data was not categorized. After preprocessing, we randomly split the dataset into 70 % training and 30 % testing sets using the cre-
ateDataPartition function from R’s caret package, stratified by the Outcome variable. To ensure reproducibility, a random seed was set,
and the dataset rows were shuffled using the sample function before splitting. After splitting, a statistical analysis confirmed that there
were no significant differences between the sets (p-value >0.05), indicating an even distribution. According to the no-free-lunch
theorem [28], algorithms do not consistently demonstrate superiority or inferiority across all possible datasets. Therefore, we
leveraged Python’s sklearn and XGBoost packages to establish a series of commonly used ML models: LR, AdaBoost, GBM, GNB, LGBM,
RF, SVM, KNN, and XGBoost. AdaBoost iteratively trains weak classifiers and combines them into a strong classifier with high ac-
curacy, noise resistance, and the ability to handle imbalanced datasets [29]. GBM utilizes decision trees as weak learners and itera-
tively enhances their predictive performance [30]. GNB is recognized for its fast computation, low memory usage, adaptability, and
robustness [31]. LGBM is a scalable gradient boosting framework suitable for high-dimensional features [32]. RF is proficient in
handling high-dimensional data with strong classification and regression capabilities [33]. SVM excels in identifying nonlinear and
high-dimensional patterns [34]. KNN makes classification decisions by measuring distances between data points [35]. In our research,
we selected LR as the baseline model. We employed Bayesian optimization combined with 5-fold internal cross-validation to search for

Fig. 1. Flowchart of this study.
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the optimal combination of hyperparameters. The discriminatory capacity of the models was assessed by constructing receiver
operating characteristic (ROC) curves and calculating the AUC. AUCs falling between 0.7 and 0.8 were considered acceptable, those
between 0.8 and 0.9 were regarded as good, and values exceeding 0.9 were classified as excellent [36]. Additionally, we conducted
variable importance analysis using XGBoost, which automatically deals with interaction features [37]. This allowed us to quantita-
tively assess the contribution of each feature to the model, thereby enhancing its interpretive capacity.

3. Results

3.1. Characteristics of the study participants

The study included a total of 2775 participants, with 63.6 % being DCH (Table 1). Among the DCH individuals, women accounted
for 56.6 % and men for 43.4 %. The median age was 65 years, with an interquartile range of 58–71 years. Men generally had higher
levels of education than women, with 28.5 % of men having less than primary school education compared to 59.0 % of women. A
detailed analysis of differences between subpopulations of men and women in (Table 2).

3.2. Comparison of model performance

Six of the nine ML algorithms demonstrated acceptable prediction performance. These algorithms included GBM (AUC = 0.705),
LGBM (AUC = 0.719), AdaBoost (AUC = 0.720), RF (AUC = 0.723), KNN (AUC = 0.726), and XGBoost (AUC = 0.729). In subgroup
analyses, among men, six algorithms showed acceptable prediction capabilities: KNN (AUC= 0.706), GBM (AUC= 0.702), RF (AUC=

0.714), XGBoost (AUC = 0.711), AdaBoost (AUC = 0.724), and LGBM (AUC = 0.734). Among women, eight algorithms demonstrated
acceptable prediction performance: SVM (AUC= 0.711), KNN (AUC= 0.712), LR (AUC= 0.713), LGBM (AUC= 0.725), GBM (AUC=

0.730), XGBoost (AUC = 0.733), AdaBoost (AUC = 0.735), and RF (AUC = 0.737). In all three groups, AdaBoost, LGBM, GBM, KNN,
RF, and XGBoost exhibited acceptable AUCs (Fig. 2). The hyperparameters used during model training were outlined (Table 3), and an
evaluation of the prediction accuracy of ML models on the testing dataset was provided (Table 4)

3.3. Determinants of DCH

Drawing upon models exhibiting acceptable AUCs across all three groups, we consolidated the top 10 important predictors
identified by the underlying classifiers of these algorithms into a union set (Table 5). The results revealed that age, waist circum-
ference, BMI, creatinine level, triglycerides, HDL-C, blood urea nitrogen, taking Western medicine, sleep disorders, total cholesterol,
and LDL-C were common predictive factors across all groups. Notably, education level, drinking, and smoking were unique to men,
while depression and body pain were specific to women. To understand the contributions of these predictors within a high-
performance tree-based model, we utilized XGBoost to rank the variable importance (Fig. 3.). The ranked predictors were highly
consistent with the union set. In the overall population, age emerged as the highest-ranked variable, followed by BMI and waist
circumference. BMI was the highest-ranked variable among men but not among women. Additionally, education level and drinking
were also identified as unique features of men, while depression stood out as a unique characteristic among women.

4. Discussion

We used ML algorithms to predict DCH in middle-aged and elderly Chinese diabetic patients, based on self-reported questions,
physical examination, and blood biomarker data. Our findings showed that ML algorithms could accurately predict DCH among
middle-aged and elderly adults. Our study also investigated gender-specific variations in predictors and model performance for pre-
dicting DCH. We found that there were gender-specific variations in predictors and model accuracy.

Our results demonstrated that the AdaBoost, RF, KNN, GBM, LGBM, and XGBoost models surpassed the LR model in accurately
predicting DCH. Overall, non-linear models outperformed linear models, suggesting that non-linear models will be more effective in
identifying DCH in clinical settings. This contrasts sharply with Jadhav’s study [20], which relied solely on biomarker data and did not
fully leverage the capabilities of nonlinear models in handling more complex datasets. Our study emphasizes the advantages of
non-linear models. However, our exploration did not include ensemble modeling, a technique that combines predictions from various
models to potentially enhance predictive performance [38]. Whether ensemble models are superior and whether the models presented
in our study are effective in clinical practice requires further validation. Although the current study was conducted in a Chinese
population, similar model development approaches can provide valuable technical insights for predicting DCH across different ethnic
groups.

Our study had several advantages. Firstly, in terms of predictors, we acknowledged the significant impact of hypoglycemic
medication on the development of hypertension in diabetic patients, which has been overlooked in previous DCH prediction models
[19–21]. Our dataset included the use of hypoglycemic medications, categorized into traditional Chinese medicine, Western medicine,
and insulin. Moreover, we conducted separate evaluations to assess the impacts of these treatments on hypertension. This consider-
ation not only provides more comprehensive information but also has the potential to guide the development of personalized and
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Table 1
Characteristics of the study participants with diabetes (n = 2775).

Characteristic Overall Men Women

Hypertension Non-
hypertension

Hypertension Non-
hypertension

Hypertension Non-
hypertension

N = 1766a N = 1009a N = 766a N = 459a N = 999a N = 550a

Gender
Men 766(43.4) 459(45.5) ​ ​ ​ ​
Women 999(56.6) 550(54.5) ​ ​ ​ ​
Missing 1(0.0) ​ ​ ​ ​ ​
Age (years) 65 (58,71) 61 (54,67) 65 (58,71) 61 (55,68) 65 (58,71) 60 (53,66)
Education level
Less than elementary school 806(45.6) 437(43.4) 217(28.5) 132(28.7) 589(59.0) 305(55.5)
Elementary school 410(23.2) 219(21.7) 217(28.3) 117(25.5) 193(19.3) 102(18.5)
Middle school 325(18.5) 229(22.7) 187(24.4) 130(28.3) 138(13.8) 99(18.0)
High school or above 210(11.9) 107(10.6) 140(18.2) 73(16.0) 69(6.9) 34(6.2)
Missing 15(0.8) 17(1.6) 5(0.6) 7(1.5) 10(1.0) 10(1.8)
Region
East 582(33.0) 323(32.0) 261(34.1) 138(30.1) 321(32.1) 185(33.6)
Midland 714(40.4) 393(38.9) 289(37.7) 176(38.3) 424(42.4) 217(39.5)
West 470(26.6) 293(29.0) 216(28.2) 145(31.6) 254(25.4) 148(26.9)
Residence
Urban 523(29.7) 248(24.6) 234(30.6) 119(25.9) 289(29.0) 129(23.5)
Rural 1236(70.0) 759(75.2) 530(69.2) 339(73.9) 706(70.6) 420(76.4)
Missing 7(0.3) 2(0.2) 2(0.2) 1(0.2) 4(0.4) 1(0.1)
Smoking
No 1082(61.2) 597(59.2) 172(22.4) 92(20.1) 910(91.1) 505(91.8)
Yes 682(38.7) 411(40.8) 593(77.5) 366(79.7) 88(8.8) 45(8.2)
Missing 2(0.1) 1(0.0) 1(0.1) 1(0.2) 1(0.1) ​
Drinking
No 1252(70.9) 695(68.9) 381(49.7) 223(48.6) 870(87.1) 472(85.8)
Yes 513(29.1) 314(31.1) 385(50.3) 236(51.4) 128(12.8) 78(14.2)
Missing 1(0.0) ​ ​ ​ 1(0.1) ​
Depression
No 848(48.0) 554(54.9) 420(54.8) 282(61.4) 427(42.8) 272(49.5)
Yes 639(36.2) 365(36,2) 246(32.1) 141(30.7) 393(39.3) 224(40.7)
Missing 279(15.8) 90(8.9) 100(13.1) 36(7.9) 179(17.9) 54(9.8)
Body pain
No 1067(60.4) 687(68.0) 532(69.5) 331(72.1) 534(53.5) 356(64.7)
Yes 600(34.0) 301(30.0) 188(24.5) 118(25.7) 412(41.2) 183(25.1)
Missing 99(5.6) 21(2.0) 46(6.0) 10(2.2) 53(5.3) 11(0.2)
Sleep disorders
No 751(42.5) 401(39.7) 262(34.2) 157(34.2) 489(49.0) 244(44.4)
Yes 883(50.0) 559(55.4) 449(58.6) 285(62.1) 433(43.3) 274(49.8)
Missing 132(7.5) 49(4.9) 55(7.2) 17(3.7) 77(7.7) 32(5.8)
Taking traditional Chinese medicine
No 1643(93.0) 963(95.4) 709(92.6) 432(94.1) 933(93.4) 531(96.5)
Yes 123(7.0) 46(4.6) 57(7.4) 27(5.9) 66(6.6) 19(3.5)
Taking Western medicine
No 1163(65.9) 785(77.8) 512(66.8) 370(80.6) 650(65.1) 415(75.5)
Yes 603(34.1) 224(22.2) 254(33.2) 89(19.4) 349(34.9) 135(24.5)
Taking insulin injections
No 1598(90.5) 955(94.6) 686(89.6) 432(94.1) 911(91.2) 523(95.1)
Yes 168(9.5) 54(5.4) 80(10.4) 27(5.9) 88(8.8) 27(4.9)
Body mass index
Underweight 45(2.5) 61(6.1) 37(8.0) 22(2.2) 24(4.3) 37(8.0)
Normal weight 452(25.6) 453(44.9) 226(49.2) 240(24.0) 227(41.3) 226(49.2)
Overweight 658(37.2) 349(34.6) 146(31.8) 374(37.5) 203(36.9) 146(31.8)
Obese 402(22.8) 136(13.5) 46(10.0) 260(26.0) 90(16.5) 46(10.0)
Missing 209(11.9) 10(0.9) 4(1.0) 103(10.3) 6(1.0) 4(1.0)
Waist circumference (cm) 93 (86,99) 87 (80,94) 86 (79,94) 93 (86,99) 88 (81,95) 86 (79,94)
Missing 204(11.5) 10(0.9) 3(0.6) 100(10.0) 7(0.1) 3(0.6)
Glycated hemoglobin (%) 6.70

(6.10,7.60)
6.60 (6.00,7.30) 6.60

(6.00,7.50)
6.50 (5.90,7.30) 6.70

(6.20,7.70)
6.60 (6.10,7.30)

Missing 276(15.6) 66(6.5) 130(16.9) 26(5.0) 146(14.6) 40(7.3)
Fasting blood glucose(mmol/L) 7.1 (5.9,8.5) 7.1 (5.7,8.4) 7.2 (5.9,8.6) 7.2 (5.8,8.6) 7.0 (5.9,8.5) 7.0 (5.6,8.4)
Missing 278(15.6) 65(6.4) 131(17.1) 26(5.0) 147(14.7) 39(7.1)
Total Cholesterol(mmol/L) 4.87

(4.26,5.54)
4.77 (4.11,5.49) 4.58

(4.07,5.24)
4.53 (3.95,5.26) 5.06

(4.46,5.77)
5.01 (4.32,5.66)

Missing 281(15.9) 67(6.5) 133(17.3) 27(5.8) 148(14.8) 40(7.3)

(continued on next page)
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precise prevention strategies. Secondly, unlike the previous study [21], our research did not incorporate blood pressure data, enabling
an examination of hypertension-related factors independent of blood pressure. This approach fosters a deeper insight into the
mechanisms underlying hypertension. Thirdly, subgroup analyses focus on prediction models for different gender groups, while also
elucidating gender-specific differences in predictors. As expected, the LGBM demonstrated superior predictive performance for men,
while the RF model performed better for women. However, previous studies have not addressed potential gender-based differences in
prediction.

We found that age, waist circumference, BMI, creatinine level, triglycerides, HDL-C, blood urea nitrogen, taking Western medicine,
sleep disorders, total cholesterol, and LDL-C were important predictors of DCH. These findings align with previous studies [11,13,15],
where age, BMI, waist circumference, creatinine level, and hypoglycemic medication were associated with DCH. Future research could
further explore the association and mechanism between hypoglycemic drugs and DCH. Guo et al. [39] found that lipid levels were
strongly associated with the occurrence of hypertension. Specifically, abnormal blood lipid levels result in reduced nitric oxide syn-
thesis, leading to impaired vasoconstriction and relaxation and abnormally high blood pressure [40]. Therefore, more emphasis should
be placed on dietary management for diabetic patients to control lipid levels. Abnormal creatinine levels indicate the severity of kidney
damage, which may be exacerbated by diabetes. Furthermore, renal dysfunction is intricately tied to both the onset and progression of
hypertension [41]. Sleep disorders stimulate the sympathetic nervous system, increasing its activity. Overactivation of the sympathetic
nervous system can lead to accelerated heart rate, vasoconstriction, and subsequent blood pressure elevation [42]. Multiple studies
have shown that insufficient sleep duration increases the risk of hypertension [43,44]. Our analysis also revealed some novel findings:
age emerged as the most important predictor in both the overall and women’s populations, while it is the second most important in the
men’s subgroup. Despite there being no statistically significant age disparity between genders in our initial analysis, this discrepancy
hints at an intricate interplay between age and diverse factors that may vary by gender. To unravel these complexities, future research
could explore the interactions between age and other predictors, accounting for biological nuances such as hormonal differences,
which may modulate the impact of age on DCH risk in a gender-specific manner. We hypothesize that one reason for this gender
difference could be the younger baseline age of men in our study compared to women. Additionally, BMI was the most influential
predictor of DCH among men, whereas it only ranked third in importance for women. This may be related to male-specific physio-
logical characteristics andmetabolic pathways, which increase men’s sensitivity to weight-related metabolic risks [45,46]. In addition,
men and women often face different societal expectations and pressures related to body image and weight management, which can
influence their health behaviors and ultimately their risk for DCH. This suggests a greater need for focusing on men’s weight man-
agement to prevent DCH. Furthermore, alcohol drinking and smoking were crucial modifiable predictors specific to men, whereas
depression and body pain were significant modifiable predictors specific to women. Previous studies have shown that men consume
alcohol and smoke at much higher rates than women [47], and women are more likely to develop psychiatric disorders and experience
insomnia compared to men [48,49]. Our findings may contribute to better identification of high-risk populations for DCH and suggest
the need for gender-specific intervention strategies. Men should prioritize controlling their alcohol consumption and smoking, as well
as improving their weight management. Meanwhile, women should focus on mental health and pain management to effectively reduce
the risk for DCH.

Table 1 (continued )

Characteristic Overall Men Women

Hypertension Non-
hypertension

Hypertension Non-
hypertension

Hypertension Non-
hypertension

N = 1766a N = 1009a N = 766a N = 459a N = 999a N = 550a

Triglycerides(mmol/L) 1.69
(1.20,2.48)

1.55 (1.05,2.33) 1.55
(1.10,2.34)

1.42 (0.95,2.18) 1.79
(1.31,2.60)

1.64 (1.13,2.40)

Missing 281(15.9) 67(6.5) 133(17.3) 27(5.8) 148(14.8) 40(7.3)
High-density lipoprotein cholesterol

(mmol/L)
1.20
(1.05,1.39)

1.26 (1.07,1.44) 1.14
(1.01,1.33)

1.20 (1.03,1.40) 1.26
(1.11,1.42)

1.29 (1.12,1.46)

Missing 281(15.9) 67(6.5) 133(17.3) 27(5.8) 148(14.8) 40(7.3)
Low-density lipoprotein cholesterol

(mmol/L)
2.69
(2.20,3.20)

2.62 (2.12,3.15) 2.52
(2.05,2.99)

2.49 (2.05,3.02) 2.82
(2.28,3.36)

2.77 (2.19,3.26)

Missing 281(15.9) 67(6.5) 133(17.3) 27(5.8) 148(14.8) 40(7.3)
Blood urea nitrogen(mmol/L) 5.40

(4.50,6.60)
5.40 (4.50,6.50) 5.50

(4.60,6.80)
5.60 (4.70,6.70) 5.30

(4.50,6.50)
5.10 (4.20,6.30)

Missing 281(15.9) 67(6.5) 133(17.3) 27(5.8) 148(14.8) 40(7.3)
Creatinine(mmol/L) 67 (57,82) 65 (56,78) 78 (68,90) 76 (66,86) 60 (53,69) 57 (51,66)
Missing 281(15.9) 68(6.5) 133(17.3) 27(5.8) 148(14.8) 41(7.4)

Note.
a n(%); Median (P25,P75).

L. Mao et al. Heliyon 10 (2024) e38124 

6 



Table 2
Analysis of differences between subpopulations of men and women.

Characteristic Men, N = 1225a Women, N = 1549a p-valueb

Age (years) 63 (57,70) 63 (56,70) 0.13
Education level ​ ​ <0.001
Less than elementary school 349(28.5) 894(57.7) ​
Elementary school 334(27.3) 295(19.1) ​
Middle school 317(25.9) 237(15.3) ​
High school or above 213(17.4) 103(6.6) ​
Missing 12(0.9) 20(1.3) ​
Region ​ ​ 0.079
East 399(32.6) 506(32.6) ​
Midland 465(37.9) 641(41.3) ​
West 361(29.3) 402(26.1) ​
Residence ​ ​ 0.5
Urban 869(71.0) 1126(72.7) ​
Rural 353(28.8) 418(27.0) ​
Missing 3(0.2) 5(0.3) ​
Smoking ​ ​ <0.001
No 264(21.5) 1415(91.3) ​
Yes 959(78.3) 133(8.6) ​
Missing 2(0.2) 1(<0.1) ​
Drinking ​ ​ <0.001
No 604(49.3) 1342(86.6) ​
Yes 621(50.7) 206(13.2) ​
Missing ​ 1(<0.1) ​
Depression ​ ​ <0.001
No 702(57.3) 699(45.1) ​
Yes 387(31.6) 617(38.9) ​
Missing 136(11.1) 233(15.0) ​
Body pain ​ ​ <0.001
No 863(70.4) 890(57.5) ​
Yes 306(25.0) 595(38.4) ​
Missing 56(4.6) 64(4.1) ​
Sleep disorders ​ ​ <0.001
No 419(34.2) 733(47.3) ​
Yes 806(65.8) 816(52.7) ​
Taking traditional Chinese medicine ​ ​ 0.13
No 1141(93.1) 1464(94.5) ​
Yes 84(6.9) 85(5.5) ​
Taking Western medicine ​ ​ 0.063
No 882(72) 1065(68.8) ​
Yes 343(28) 484(31.2) ​
Taking insulin injections ​ ​ 0.2
No 1118(91.3) 1434(92.6) ​
Yes 107(8.7) 115(7.4) ​
Body mass index ​ ​ <0.001
Underweight 60(4.9) 46(3.0) ​
Normal weight 438(35.8) 467(30.2) ​
Overweight 429(35.0) 577(37.2) ​
Obese 188(15.3) 350(22.6) ​
Missing 110(9.0) 109(7.0) ​
Waist circumference (cm) 91(82, 98) 91(84, 98) 0.4
Missing 107(8.7) 107(6.9) ​
Glycated hemoglobin (%) 6.6(6.0, 7.4) 6.7(6.2, 7.5) <0.001
Missing 156(12.7) 186(12.0) ​
Fasting blood glucose (mmol/L) 7.2(5.8, 8.6) 7.0(5.8, 8.4) 0.085
Missing 157(12.8) 186(12.0) ​
Total Cholesterol (mmol/L) 4.5(4.0, 5.2) 5.0(4.4, 5.7) <0.001
Missing 160(13.0) 188(12.1) ​
Triglycerides (mmol/L) 1.5(1.0, 2.2) 1.7(1.2, 2.4) <0.001
Missing 160(13.0) 188(12.1) ​
High-density lipoprotein cholesterol (mmol/L) 1.1(1.0, 1.3) 1.2(1.1, 1.4) <0.001
Missing 160(13.0) 188(12.1) ​
Low-density lipoprotein cholesterol(mmol/L) 2.5(2.0, 3.0) 2.8(2.2, 3.3) <0.001
Missing 160(13.0) 188(12.1) ​
Blood urea nitrogen(mmol/L) 5.6(4.6, 6.8) 5.2(4.4, 6.4) <0.001
Missing 160(13.0) 188(12.1) ​
Creatinine(mmol/L) 77(67, 88) 59(52, 68) <0.001
Missing 160(13.0) 189(12.2) ​

Note.
a n(%); Median (P25,P75).
b Pearson’s Chi-squared test; Wilcoxon rank sum test; Fisher’s exact test.

L. Mao et al. Heliyon 10 (2024) e38124 

7 



5. Limitations

Several limitations in our study must be acknowledged. Firstly, the cross-sectional design of our research limits our ability to draw
causal inferences. Secondly, our study sample was obtained from a publicly available database that lacked dietary information and had
more severe missing exercise-related variables. Previous research has demonstrated a strong correlation between diet, exercise, and
the onset of hypertension [50,51]. Therefore, incorporating these factors could enhance the model’s accuracy. Additionally, the
absence of dietary information may have hindered a comprehensive evaluation of nutritional influences on study outcomes, poten-
tially overlooking associations between diet and hypertension. Thirdly, there is room for enhancing the model’s predictive accuracy
(AUC = 0.73), necessitating further studies to refine it. Moreover, except for geographic data, all other pertinent information was
self-reported or tested, making it susceptible to recall bias and measurement inaccuracies, which could affect the reliability of the
model. Future studies should consider utilizing more objective measurements. Furthermore, our study is limited in its ability to
differentiate between various types of diabetes due to the constraints of the data source. As a result, we are unable to accurately assess
the specific risk profiles and implications of different types of diabetes. Lastly, the model’s generalizability to other age groups or
populations outside of China remains uncertain. Further external validation will be needed.

Fig. 2. Receiver operating characteristic curves for all models in the testing dataset. AUC, area under the curve; LR, logistic regression; AdaBoost,
adaptive boosting; GBM, gradient boosting machine; GNB, gaussian naive Bayes; LGBM, light gradient boosting machine; RF, random forest; SVM,
support vector machine; KNN, k-nearest neighbor classification; XGBoost, extreme gradient boosting.

Table 3
Summary of the hyperparameters of each model with acceptable AUCs.

Models Parameters Range Parameter values

Overall Men Women

AdaBoost learning_rate [0.001,0.01,0.1,0.3,0.5,0.7,1.0] 0.01 0.1 0.1
n_estimators [10,50,500] 500 50 50

LGBM learning_rate [0.01,0.02,0.03,0.04,0.05,1] 0.03 0.01 0.01
n_estimators [100,200,500,1000] 100 100 200
num_leaves [10,50,100,200,300,400,500] 10 10 10

GBM learning_rate [0.001, 0.01,0.1,0.3,0.5,0.7,1.0] 0.1 0.001 0.01
n_estimators [50,100,150,300, 500] 100 50 300
max_depth [2,3,5,8,15,30] 3 3 2

KNN n_neighbors [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] 30 30 26
RF n_estimators [50, 75, 100, 125, 150, 200, 400] 400 75 400

max_depth [5, 10, 30, 60, 100] 10 5 5
min_samples_leaf [2,5,10] 10 8 10
min_samples_split [1,2,4,8,10] 2 5 2

XGBoost learning_rate [0.001, 0.01, 0.1, 0.3, 0.5, 0.7, 1.0] 0.01 0.01 0.001
n_estimators [100, 300, 500] 500 500 500
max_depth [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] 16 16 6

Note: AUC, area under the curve; LR, logistic regression; AdaBoost, adaptive boosting; GBM, gradient boosting machine; GNB, gaussian naive Bayes;
LGBM, light gradient boosting machine; RF, random forest; SVM, support vector machine; KNN, k-nearest neighbor classification; XGBoost, extreme
gradient boosting.
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Table 4
Comparison of prediction performance of machine learning models on the testing dataset.

Groups Models AUC Sensitivity Specificity Accuracy F1 score

Overall LR 0.660 0.768 0.440 0.560 0.559
AdaBoost 0.720 0.745 0.571 0.634 0.597
LGBM 0.719 0.772 0.550 0.631 0.603
GBM 0.705 0.758 0.533 0.615 0.589
GNB 0.626 0.752 0.367 0.507 0.525
KNN 0.726 0.758 0.586 0.649 0.611
RF 0.723 0.755 0.580 0.644 0.606
SVM 0.698 0.781 0.495 0.599 0.586
XGBoost 0.729 0.758 0.567 0.637 0.603

Men LR 0.651 0.708 0.546 0.607 0.574
AdaBoost 0.724 0.737 0.576 0.637 0.603
LGBM 0.734 0.759 0.581 0.648 0.617
GBM 0.702 0.715 0.537 0.604 0.575
GNB 0.624 0.759 0.410 0.541 0.553
KNN 0.706 0.766 0.563 0.639 0.614
RF 0.714 0.759 0.568 0.639 0.612
SVM 0.687 0.730 0.537 0.609 0.583
XGBoost 0.711 0.781 0.524 0.620 0.606

Women LR 0.713 0.733 0.605 0.651 0.599
AdaBoost 0.735 0.752 0.615 0.664 0.614
LGBM 0.725 0.727 0.589 0.638 0.588
GBM 0.730 0.733 0.625 0.664 0.608
GNB 0.670 0.739 0.441 0.547 0.537
KNN 0.712 0.715 0.629 0.659 0.599
RF 0.737 0.758 0.625 0.672 0.622
SVM 0.711 0.733 0.602 0.649 0.598
XGBoost 0.733 0.758 0.615 0.666 0.617

Note: AUC, area under the curve; LR, logistic regression; AdaBoost, adaptive boosting; GBM, gradient boosting machine; GNB, gaussian naive Bayes;
LGBM, light gradient boosting machine; RF, random forest; SVM, support vector machine; KNN, k-nearest neighbor classification; XGBoost, extreme
gradient boosting.

Table 5
The union set of the top 10 important predictors of machine learning models with acceptable AUCs in all three groups.

Groups Predictors

Overall age, body mass index, waist circumference, taking Western medicine, triglycerides, high-density lipoprotein cholesterol, creatinine level, fasting blood
glucose, low-density lipoprotein cholesterol, total cholesterol, blood urea nitrogen, glycated hemoglobin, and sleep disorders.

Men body mass index, age, high-density lipoprotein cholesterol, waist circumference, education level, drinking, blood urea nitrogen, taking Western
medicine, total cholesterol, creatinine level, low-density lipoprotein cholesterol, fasting blood glucose, triglycerides, glycated hemoglobin, smoking,
and sleep disorders.

Women age, waist circumference, body mass index, creatinine level, depression, triglycerides, high-density lipoprotein cholesterol, blood urea nitrogen, taking
Western medicine, sleep disorders, total cholesterol, low-density lipoprotein cholesterol, and body pain.

Note: AUC, area under the curve.

Fig. 3. The importance of the top 10 predictors in the prediction of DCH using extreme gradient boosting.
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6. Conclusions

Our study demonstrates that ML algorithms could predict DCH. Overall, non-linear models showed better performance compared to
traditional logistic regression for predicting DCH. Additionally, we explored gender-based variations in predictors andmodel accuracy,
highlighting differences between men and women. Our prediction model and analysis of variable importance could offer valuable
references for the early detection and health management of hypertension in middle-aged and elderly adults with diabetes in China.
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