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A B S T R A C T

Hospitals are paramount hubs for delivering healthcare services, with their Operating Rooms (ORs) as a pivotal
and financially substantial component. Efficient surgery ward planning is crucial in healthcare institutions,
aiming to improve medical service quality while reducing costs. This research delves into the intricacies
of integrated OR planning and scheduling, focusing on elective and emergency patients in an uncertain
environment. To address these challenges, a mixed integer programming (MIP) framework is developed to
minimize inactivity and patient wait times while optimizing high-priority resource allocation. Both upstream
and downstream units of the ward, the Pre-operative Holding Unit (PHU), Post Anesthesia Care Unit (PACU),
and Intensive Care Unit (ICU) are included. The inherently uncertain aspects of surgery, including surgical
duration, Length of Stay (LOS), and the influx of emergency patients, demand an intelligent optimization
approach. Consequently, a robust optimization strategy is harnessed to effectively grapple with this pervasive
uncertainty. A deterministic model is introduced and improved using an enhanced epsilon constraint method.
The culmination of this analytical journey yields a collection of Pareto-optimal solutions. Empirical results,
supported by managerial insights, highlight the superiority of the proposed method over the traditional
weighting approach.
. Introduction

Contemporary healthcare facilities place paramount significance on
dept management strategies to effectively deliver patient services
ithin hospitals. With a dual objective of cost reduction and enhanced
enefits, hospitals strive to streamline operational resources without
ompromising patient satisfaction. Central to this endeavor is the oper-
ting room (OR), acknowledged as a pivotal locus of both expenditure
nd revenue within hospital operations [1]. One way to increase OR
fficiency is to effectively use OR time, which is related to surgical
iming. A scheduled time is given to the patient for the surgery, and
t is clear that it is preferred that the surgery starts at the scheduled
ime. But due to unpredictable factors, an OR may not be available
t the scheduled start time, so the patient has to wait, which reduces
atient and surgeon satisfaction [2]. Functioning as the cornerstone of
ospital activity, the OR warrants meticulous attention due to its piv-
tal role in financial dynamics. Consequently, optimizing efficiency and
roductivity within the surgical domain yields multifaceted advantages,
ncluding prolonged patient longevity, heightened survival rates, and

∗ Corresponding authors.
E-mail address: valikayvanfar@hbku.edu.qa (V. Kayvanfar).

enhanced stakeholder satisfaction [3]. The increase in healthcare costs
in recent decades has caused the importance of this issue to increase,
and the attention of more researchers has been drawn to study and
research in this field.

Enhancing the productivity and efficiency of hospitals, particularly
in ORs, alongside ensuring timely treatment, necessitates proficient
management strategies [4]. Medical services should be fairly provided
to the vulnerable groups of the society. This is what health justice
emphasizes [5]. Due to the aging of the population, the increase in
chronic pathologies and the increase in life expectancy, hospitals are
facing a growing demand for health care. This causes their capacity to
be more saturated than before, and health care costs continue to rise
[6].

The optimization of OR efficiencies can be facilitated through the
application of optimization theories and information technologies, al-
though manual planning persists in certain healthcare settings [7].
Typically, the demand for surgical interventions surpasses the avail-
able capacity, resulting in prolonged wait times, diminished patient
satisfaction, and compromised service quality [8].
ttps://doi.org/10.1016/j.dajour.2024.100475
eceived 4 February 2024; Received in revised form 29 April 2024; Accepted 1 Ma
vailable online 6 May 2024
772-6622/© 2024 The Author(s). Published by Elsevier Inc. This is an open acces
http://creativecommons.org/licenses/by/4.0/).
y 2024

s article under the CC BY license

https://doi.org/10.1016/j.dajour.2024.100475
https://www.elsevier.com/locate/dajour
https://www.elsevier.com/locate/dajour
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dajour.2024.100475&domain=pdf
mailto:valikayvanfar@hbku.edu.qa
https://doi.org/10.1016/j.dajour.2024.100475
http://creativecommons.org/licenses/by/4.0/


Y. Fallahpour, M. Rafiee, A. Elomri et al. Decision Analytics Journal 11 (2024) 100475
Fig. 1. Health spending as a percentage of GDP (from 1980 to 2020).
Fig. 2. Health expenditure per capita.
Given that approximately 60 to 70% of hospital admissions are
associated with OR utilization, improvements in OR efficiency yield a
positive impact on enhancing patient satisfaction levels, given the inter-
connected nature of ORs with other hospital functions [9]. According to
statistics provided by the Organization for Economic Cooperation and
Development (OECD), the costs related to hygiene and treatment have
escalated in developed nations.

Fig. 1 illustrates a consistent upward trajectory in GDP-related costs,
with Zhao and Li [10] forecasting a continuation of this trend in the
coming years. Consequently, it becomes evident that the development
and implementation of an effective program, particularly within the
surgical ward, is imperative and justified. The proportion of healthcare
spending relative to GDP has seen a rise in developed nations, reaching
12.4% in 2015, as indicated by the World Bank [11]. GCC countries
also spend about 2 to 4% of their GDP on healthcare. Fig. 2, utilizing
World Bank statistics, demonstrates a concurrent increase in health
expenditure per capita, a metric encompassing the end-use of health
goods and services for each individual. This encompasses spending
from both public and private sources on medical services, goods, public
health initiatives, prevention programs, and administration (OECD).

Such statistics underscore the necessity for thorough investigation and
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analysis in this domain. Over the past few decades, Qatar’s government
has been investing heavily in developing an integrated healthcare sys-
tem that offers high-quality services. As a consequence, the healthcare
industry has witnessed unprecedented growth and is estimated to reach
$12 billion in 2024, reflecting an incredible growth of 360% compared
to 2010 as indicated by Mashreq [12]. According to the OECD, patients
have historically experienced prolonged hospitalization durations on
average. This is reflected in the extended Length of Stay (LOS) for
patients in both upstream and downstream sectors. Fig. 3 visually
depicts the average number of hospitalization days (from 2003 to 2021)
for patients in both upstream and downstream units.

ORs represent significant financial investments, with surgical pro-
cedures accounting for over 40% of hospitals’ expenditures [13]. The
planning and scheduling of OR activities pose considerable challenges,
primarily due to two factors: firstly, the complexity of resource al-
location (including ORs, surgical staff, etc.) for surgeries and their
sequencing, and secondly, the inherent uncertainty surrounding re-
lated activities [14]. Critical resources essential for OR planning and
scheduling, such as personnel (surgeons, nurses, etc.), surgical equip-
ment, and bed availability in units such as the Pre-Operative Holding

Unit (PHU), Post Anesthesia Care Unit (PACU), Intensive Care Unit
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Fig. 3. The Average number of hospitalization days in upstream and downstream units for patients.
(ICU), and general wards, must be meticulously coordinated to ensure
surgical readiness [15]. Recognizing capacity constraints and strategi-
cally identifying supplementary resources are vital for optimizing the
utilization of available assets [16]. Furthermore, external factors such
as high-pressure work environments (exemplified by pandemics like
COVID-19 and mass casualty incidents) and resource scarcity persist as
significant challenges [17]. Consequently, it becomes evident that the
consideration of both upstream and downstream units holds paramount
importance in comprehensive planning efforts.

The presence of stochastic elements is inherent to surgery schedul-
ing dilemmas [18]. As underscored by Min and Yih [19], Shore [20],
and Shehadeh and Padman [21], the variability in surgery duration
and Length of Stay (LOS) within downstream units serves as a pri-
mary source of disruption to daily scheduling routines and patient
flow downstream [22]. Fluctuations in LOS within units such as the
PACU and downstream facilities engender unpredictable availability of
recovery beds and contribute to congestion issues [23]. Fourati et al.
[24] suggested an integrated dynamic satisfaction function and Lexico-
graphic goal programming (GP) model so as to handle the scheduling
of nurses, considering two related aspects of hospital regulation limita-
tions. In practical scenarios, certain parameters remain subject to un-
certainty, including surgery duration, LOS within upstream and down-
stream units, and emergency demand, all of which significantly impact
operational dynamics. Effective and efficient management within ORs
necessitates the explicit consideration of these uncertainties inherent
to the surgical process. However, OR planning and scheduling have
traditionally received limited attention due to the increased complex-
ity introduced by such uncertainties [25]. Consequently, this paper
adopts an integrated approach to address this multifaceted challenge.
Moreover, the inclusion of emergency patients further compounds the
complexity of the problem, given their potential arrival at any time of
the day or night [26].

This study delves into the intricacies of integrated planning and
scheduling within ORs, considering several constraints including OR
availability, surgeon availability, and bed availability in both upstream
and downstream units (PHU, PACU, ICU, and ward), alongside con-
straints on the maximum number of time slots allotted for each sur-
geon’s surgeries within the planning horizon. The scheduling process
encompasses both elective and emergency patients, employing an open
strategy. In the open strategy, the available time blocks are not spe-
cialized to any surgeon or surgical group. Surgeons provide the list
of their operations to the surgery department a few days in advance,
and patients are scheduled according to the schedule and requests of
all surgeons. Notably, the uncertainty surrounding surgery duration,
3

Length of Stay (LOS) in upstream and downstream units, and emer-
gency demands is duly acknowledged. A mixed-integer programming
(MIP) model is formulated to address this complex scenario, with con-
siderations given to idle time, waiting time, and allocation priorities for
high-priority patients. Subsequently, a robust optimization approach is
adopted to tackle the inherent uncertainty in the problem. To facilitate
comparison of results, both weighting and epsilon-constraint methods
are employed. The literature motivates us to explore why integrated
OR review considering elective and emergency patients is important
by addressing the following research questions.

(1) How does adding emergency patients affect the planning and
scheduling of elective patients?

(2) How can the OR problem be formulated and solved by con-
sidering the upstream and downstream units and the inherent
uncertainties in the surgical procedures?

The rest of the contributions of this paper are outlined as follows:

• Development of an innovative mixed-integer programming (MIP)
model tailored for integrated OR planning and scheduling.

• Inclusion of considerations for both upstream and downstream
units, encompassing the PHU, PACU, ICU, and ward.

• Accounting for uncertainty pertaining to surgery duration, LOS in
upstream and downstream units, and emergency demand.

• Introduction of a robust optimization approach designed to ef-
fectively manage and mitigate uncertainty within the scheduling
framework.

Each of the following sections in this paper investigates these con-
tents: Section 2, the related literature review; Section 3, the problem
description; Section 4, defining the proposed solution methods; Sec-
tion 5, computational results and analysis; Section 6, achievements of
managerial insights, and finally Section 7 conclusion.

2. Literature review

Addressing healthcare and treatment provision stands as a
paramount concern, necessitating a scientific and pragmatic approach
to mitigate rising costs and optimize resource utilization. This section
aims to review pertinent literature focusing on models that incorpo-
rate uncertainty, particularly within the realm of OR scheduling, a
prominent area in medical and operational research. Planning, defined
as aligning process supply with demand, and scheduling, involving
activity sequencing and timing, are fundamental aspects [27]. Erdo-
gan and Denton [28], Cardoen et al. [1], and Guerriero and Guido
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[29] have conducted extensive reviews on surgery scheduling issues.
Molina-Pariente et al. [30] devised an integer programming model,
incorporating surgeons’ expertise’s influence on surgery duration. Shylo
et al. [31] tackled scheduling complexities through a block strategy,
employing chance-constrained planning to manage OR overtime. Den-
ton et al. [13] proposed a two-stage stochastic programming model
accounting for surgery duration uncertainty. Moosavi and Ebrahimne-
jad [32] introduced a multi-objective mathematical model considering
uncertain parameters such as surgery duration and Length of Stay (LOS)
in upstream and downstream units, along with emergency demand.
M’Hallah and Visintin [33] developed a stochastic model specify-
ing surgery type and number, addressing stochastic elements like
surgery and post-surgery LOS. Min and Yih [19] addressed scheduling
incorporating patient preferences, framed as a stochastic dynamic
programming model.

Kroer et al. [34] devised a stochastic model accommodating variable
operation durations and unknown arrival times for emergency patients.
Kamran et al. [35] addressed OR planning and scheduling, employing
a stochastic MILP model capable of handling randomly distributed
surgery durations alongside patient, staff, and surgeon preferences.
Lee and Yih [36] incorporated constraints on recovery bed access and
surgery duration uncertainty in their OR scheduling model. Vali-siar
et al. [4]) investigated a multi-period, multi-resource OR integrated
planning and scheduling problem, devising a MILP model. Kayvanfar
et al. [37] proposed an optimization plan aimed at minimizing OR
idle times and maximizing scheduled surgeries within optimal time
windows. Mazlooumian et al. [25] recently introduced an integrated
OR planning and scheduling model, optimizing OR utilization rates
and reducing patient waiting times while considering uncertain surgery
durations and emergency arrivals.

The inclusion of constraints pertaining to human resources, equip-
ment, and bed availability in units such as the PHU, PACU, ICU,
and ward was paramount. Eun et al. [38] introduced the concept of
maximizing the minimum patient health condition, considering un-
certainty in operation durations. Jebali and Diabat [39] devised a
two-stage chance-constrained stochastic programming model, account-
ing for random surgery durations, ICU LOS, and resources earmarked
for emergencies.

Zhang et al. [40] investigated a stochastic elective surgery problem
under downstream constraints, presenting a two-level optimization
model integrating Markov decision processes (MDP) and stochastic
programming. Khaniyev et al. [41] addressed the next-day schedul-
ing dilemma in a single OR, incorporating uncertain durations for
elective surgeries through a hybrid heuristic approach. Breuer et al.
[42] recently proposed a robust optimization model to accommodate
uncertainty and variations in procedure durations and surgeon avail-
ability. Rachuba et al. [43] integrated planning and scheduling chal-
lenges across ORs, clinical staff, and patient assignments. Their in-
novative chance-constraint optimization model addressed unscheduled
arrivals, including emergencies, alongside uncertainties in surgery du-
ration and LOS in ICU. They introduced a comprehensive planning
framework incorporating both the optimization model and a simulation
tool. Agrawal et al. [2] formulated a mathematical model consider-
ing stochastic surgery durations, proposing a suite of heuristics and
employing Monte Carlo simulation techniques for problem resolution.
Recently, Maleki et al. [44] studied a multi-stage linear mixed inte-
ger optimization model in order to optimize the operation time and
resource allocation. They used the decision tree method to generate
scenarios. They also applied Robust optimization and Upper partial
moments methods to proposed efficient solutions. Bargetto et al. [45]
addressed a new model of the sequence-dependent OR cleaning times.
To solve the proposed planning and scheduling mathematical model,
they devised a branch-and-price-and-cut algorithm. Yang et al. [46]
focused on a resource-constrained OR scheduling problem for elective
patients. They presented a mixed integrated programming model to
uncover the impact of no-wait and resources on the problem and used a

slack speed-up based discrete artificial bee colony to solve the problem.
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Fig. 4. The surgery process.

To facilitate comparison with recently published studies, their key
characteristics have been synthesized and juxtaposed in Table 1. The
literature review underscores a relative paucity of attention directed
towards emergency patient management, constraints within upstream
and downstream units, and uncertainty across all stages simultane-
ously, with only a few studies addressing these aspects collectively. No-
tably, meta-heuristic approaches have been predominantly employed
for model resolution, with fewer instances of definitive solutions. To
our knowledge, none of the existing literature has utilized constraint-
based methods. In addressing these gaps, our objective is to aug-
ment the literature by providing a more precise and effective solution
through rigorous examination.

The current investigation endeavors to comprehensively address
significant uncertainties inherent in surgical processes, encompassing
variables such as surgery duration, LOS in both upstream and down-
stream units, and the unpredictable arrival of emergency patients.
Within this framework, a multi-objective model is proposed for orches-
trating the planning and scheduling of ORs, with the primary aims of
minimizing idle periods and patient waiting times, while maximizing
the allocation priority for high-priority patients.

3. Problem description

The surgery process for each patient consists of three stages. In the
first step, a bed is allocated to a patient, where a nurse checks the
patient’s condition. In the second phase, the patients are transported
to the OR. In most hospitals, there are different ORs with different
features. No difference is considered between surgeons and only their
availability is important.

A suitable OR is assigned to a surgery by its type. Finally, after
the surgery, the patient is transferred back to recovery. Depending on
the patient’s health condition, he/she is transported to ICU or ward. It
should be mentioned that some patients do not need to be hospitalized
and, shortly after surgery, can be discharged. Fig. 4 shows the different
stages of the surgery process. In this study, emergency surgeries are
included. They can affect the schedule and make changes to scheduled
elective patients. In this regard, a MIP model is designed and proposed
in this research.

The following assumptions are taken into account in this research:

1. Upstream and downstream units, including PHU, PACU, ICU and
ward, are all considered.

2. The elective patients have priority. Considering that the list of
elective surgeries and the status of people are known at the
beginning of the planning, so the patients who have priority are
known.

3. Emergency patients are taken into account. The condition of
admitting an emergency patient is that if it takes less than one
hour from the time of the patient’s arrival to the emptying of the
appropriate OR, the patient will be admitted, otherwise he/she

will not be admitted.
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Table 1
A summary of features of the selected studies after 2010.

Authors and years Problem Resources Uncertainty Patient

Planning Scheduling PHU PACU ICU Ward Surgery Recovery LOS Emergency Elective Emergency

Min and Yih [19] ✔ ✔ ✔ ✔

Shylo et al. [31] ✔ ✔ ✔

Lee and Yih [36] ✔ ✔ ✔ ✔

Molina-Pariente et al. [30] ✔ ✔ ✔ ✔

Jebali and Diabat [39] ✔ ✔ ✔ ✔ ✔ ✔ ✔

Kroer et al. [34] ✔ ✔ ✔ ✔ ✔ ✔

Eun et al. [38] ✔ ✔ ✔

Moosavi and Ebrahimnejad [32] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Vali-siar et al. [4] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

M’Hallah and Visintin [33] ✔ ✔ ✔ ✔ ✔ ✔

Zhang et al. [40] ✔ ✔ ✔ ✔ ✔

Kamran et al. [35] ✔ ✔ ✔ ✔ ✔

Breuer et al. [42] ✔ ✔ ✔ ✔

Khaniyev et al. [41] ✔ ✔ ✔

Rachuba et al. [43] ✔ ✔ ✔ ✔ ✔ ✔ ✔

Mazlooumian et al. [25] ✔ ✔ ✔ ✔ ✔ ✔

Agrawal et al. [2] ✔ ✔ ✔

Maleki et al. [44] ✔ ✔ ✔ ✔ ✔ ✔ ✔

Bargetto et al. [45] ✔ ✔ ✔

Yang et al. [46] ✔ ✔ ✔ ✔

Current investigation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4. The same resources are considered for elective and emergency
patients.

5. The ORs are different.
6. The duration of surgery (without considering cleaning and set

up time), LOS in upstream and downstream units, as well as
emergency demand are all considered uncertain.

7. The roster of elective patients is determined.
8. The time is divided into 20-min intervals.
9. Based on the condition of the patient after surgery, he/she is

transferred to the intensive care unit or ward.

In order to introduce the model, notations, including indices, should be
first defined.

3.1. Sets

𝑝, 𝑏 Index for patients p=1,2,3,…,P b=1,2,3,…,B (b
is just for showing the sequence)

𝑖(1,2,3) Index for PHU (i=1), operation (i=2), recovery
(i=3)

𝑗(1,2) Index for ICU (j=1), ward (j=2)
𝑜 Index for ORs o=1,2,3,…,O
𝑠 Index for surgeons s=1,2,3,…,S
𝑡 Index for time slots t=1,2,3,…,T
𝑑, 𝑑′ Index for days d=1,2,3,…,D
𝑒 Index for emergency patients e=1,2,3,…,E
𝑜′ The rooms that are free to schedule the

emergency patient.
𝑠′ The surgeons that are free to do the operation on

the emergency patient.

3.2. Parameters

𝑙𝑝 A binary parameter; if patient p needs ICU, =1,
otherwise =0.

𝑙𝑤𝑝 A binary parameter; if patient p needs ward, =1,
otherwise =0.

𝐵𝑒𝑑𝑖 Total number of beds in stage i
𝑏𝑒𝑝 The beginning of the best period of scheduling

surgery for patient p
𝑓𝑖𝑝 The finishing of the best period of scheduling

surgery of patient p
5

𝐶𝑝 The point of priority of patient p(based on the
urgency of the patient’s condition)

𝑀 A very large number
𝐻𝑚𝑎𝑥 The maximum time slots that a surgeon can do

surgeries in the planning horizon
𝑁𝑡 The normal time (last slot) for scheduling

surgeries (OR opening hours)
𝑂𝑡 The last time slot in opening hours (when no

operation is planned for selected patients after
that)

𝛼 The occupancy level coefficient
𝑑𝑢1𝑝𝑖 The duration of stage i for patient p
𝑑𝑢2𝑝𝑗 The duration of stage j for patient p
𝐶𝑎𝑑𝑗 The capacity of stage j in day d
𝑎𝑣𝑠𝑑𝑡 A binary parameter; =1 if surgeon s is not

available at time t on day d; otherwise =0
𝑛𝑝𝑜𝑠 A binary parameter; =1 if the surgery of patient p

can be scheduled in room o and surgeon s;
otherwise = 0

𝑎𝑟𝑒 The arrival time of emergency patient e
𝑑𝑎𝑒 The day of arrival emergency patient e
𝑛𝑢𝑚𝑑 The number of emergency patients on day d
𝑎𝑒 =1 if patient e needs to be in ICU; otherwise, = 0.
𝑎𝑤𝑒 =1 if patient e needs to be in the ward; otherwise,

= 0.
𝑙𝑒𝑛1𝑒𝑖 The duration of stage i for patient e
𝑙𝑒𝑛2𝑒𝑗 The duration of stage j for patient e
𝑙𝑜 The earliest time that an OR is free.

3.3. Decision variables

𝑥𝑝𝑜𝑠𝑡𝑑 A binary variable; equals 1 if the surgery of
patient p is scheduled in oth OR with surgeon s at
time t on day d; otherwise =0

𝑡1𝑝𝑖 The start time of stage i for patient p
𝑡2𝑝𝑗 The finishing time of stage i for patient p
𝜆𝑝𝑡𝑑𝑖 A binary variable; =1 if stage i for patient p in

time t and day d is scheduled; otherwise =0.
𝑥𝑖𝑝𝑑 A binary variable; =1 if patient p needs to be in

ICU on day d; otherwise = 0.
𝑥𝑤𝑝𝑑 A binary variable; =1 if patient p needs to be in

the ward on day d; otherwise = 0.
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𝑖𝑑𝑡𝑜𝑑 The idle time of the OR o in day d
𝑅𝑝 A binary variable; =1 if patient p is scheduled in

the best period; otherwise = 0.
𝑓𝑝𝑏𝑑 A binary variable; =1 if patient b is operated after

p on day d; otherwise = 0.
𝑤𝑝𝑏𝑑 A binary variable; =1 if patient b goes to recovery

after p on day d; otherwise = 0.
𝑦𝑒𝑜𝑠𝑡𝑑 A binary variable; =1 if patient e is scheduled in

oth OR with surgeon s on day d; otherwise = 0.
𝑡𝑏𝑒𝑖 The start time of stage i for patient e
𝑡𝑓𝑒𝑖 The finishing time of stage j for patient e
𝑦𝑖𝑒𝑑 A binary variable; =1 if patient e needs to be in

ICU; otherwise = 0.
𝑦𝑤𝑒𝑑 A binary variable; =1 if patient e needs to be in

the ward; otherwise = 0.

3.4. Mathematical model

𝑀𝑖𝑛
∑

𝑜

∑
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∑
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𝑝
𝐶𝑝𝑅𝑝

(1)
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𝑑
𝑥𝑝𝑜𝑠𝑡𝑑 ≤ 1 ∀𝑝.𝑡 (2)
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𝑡
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𝑑
𝑥𝑝𝑜𝑠𝑡𝑑 = 0 ∀𝑡 > 𝑂𝑡 (4)

∑

𝑜
𝑥𝑝𝑜𝑠𝑡𝑑 ≤

(

1 − 𝑎𝑣𝑠𝑡𝑑
)

∀𝑝.𝑠.𝑡.𝑑 (5)
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𝑥𝑝𝑜𝑠𝑡𝑑 ≤ 𝑛𝑝𝑜𝑠 ∀𝑝.𝑜.𝑠 (6)

𝑡1𝑝𝑖 = 𝑡2𝑝.𝑖−1 ∀𝑝.𝑖 ≠ 1 (7)

𝑡2𝑝𝑖 ≥ 𝑡1𝑝𝑖 + 𝑑𝑢
1
𝑝𝑖
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∑

𝑑
𝑥𝑝𝑜𝑠𝑡𝑑 ∀𝑝.𝑖 (8)

∑

𝑝
𝛿𝑝𝑡𝑑𝑖 ≤ 𝐵𝑒𝑑𝑖 ∀𝑡.𝑑.𝑖 ≠ 2 (9)

𝑖𝑑𝑡𝑜𝑑 = 𝑁𝑇 −
∑

𝑝

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 ∀𝑜.𝑑.𝑡 ≤ 𝑁𝑇 (10)

∑

𝑝
𝑙𝑝
∑

𝑝

∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑

≤ 𝛼𝐶𝑎𝑑𝑗 −
∑

𝑝
𝑥𝑖𝑝𝑑 ∀𝑑.𝑗 = 1 (11)

𝑥𝑖𝑝𝑑 ≥
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑′ 𝑙𝑝 ∀𝑝.𝑑.𝑑′.𝑗.𝑑′ ≤ 𝑑 < 𝑑′ + 𝑑𝑢2𝑝𝑗

(12)

𝑡1𝑝𝑖 ≤𝑀

(

∑

𝑜

∑

𝑠

∑

𝑡

∑

𝑑
𝑥𝑝𝑜𝑠𝑡𝑑

)

∀𝑝.𝑖 (13)

∑

𝑡

∑

𝑑
𝛿𝑝𝑡𝑑𝑖 = 𝑡2𝑝𝑖 − 𝑡

1
𝑝𝑖 ∀𝑝.𝑖 (14)

∑

𝑝

∑

𝑜

∑

𝑡

∑

𝑑
𝑥𝑝𝑜𝑠𝑡𝑑 ≤ 𝐻𝑚𝑎𝑥 ∀𝑠 (15)

𝑥𝑤𝑝𝑑 ≥
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑′ 𝑙𝑤𝑝 ∀𝑝.𝑑.𝑑′.𝑗 = 2.𝑑′ ≤ 𝑑 < 𝑑′ + 𝑑𝑢2𝑝𝑗

(16)
∑

𝑝

∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 ≤ 𝐶𝑎𝑑𝑗 −

∑

𝑝
𝑥𝑤𝑝𝑑 ∀𝑑.𝑗 = 2 (17)

∑

𝑜

∑

𝑠

∑

𝑡

∑

𝑑
𝑥𝑝𝑜𝑠𝑡𝑑 = 𝑅𝑝 ∀𝑝.𝑏𝑒𝑝 < 𝑑 < 𝑓𝑖𝑝 (18)
𝑓𝑝𝑏𝑑 + 𝑓𝑏𝑝𝑑 ≤ 1 +𝑀

6

×

(

2 −
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 −

∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑏𝑜𝑠𝑡𝑑

)

(19)

𝑝.𝑏.𝑝 ≠ 𝑏.𝑝 < 𝑏. ∀𝑑

𝑝𝑏𝑑 + 𝑓𝑏𝑝𝑑 ≥ 1 −𝑀

×

(

2 −
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 −

∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑏𝑜𝑠𝑡𝑑

)

(20)

𝑝.𝑏.𝑝 ≠ 𝑏.𝑝 < 𝑏. ∀𝑑

𝑝𝑏𝑑 +𝑤𝑏𝑝𝑑 ≤ 1 +𝑀

×

(

2 −
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 −

∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑏𝑜𝑠𝑡𝑑

)

(21)

𝑝.𝑏.𝑝 ≠ 𝑏.𝑝 < 𝑏. ∀𝑑

𝑝𝑏𝑑 +𝑤𝑏𝑝𝑑 ≥ 1 −𝑀

×

(

2 −
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 −

∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑏𝑜𝑠𝑡𝑑

)

(22)

𝑝.𝑏.𝑝 ≠ 𝑏.𝑝 < 𝑏. ∀𝑑

𝑝𝑏𝑑 +𝑤𝑝𝑏𝑑 ≤ 2
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 ∀𝑝.𝑏.𝑝 ≠ 𝑏.𝑝 < 𝑏. ∀𝑑 (23)

𝑝𝑏𝑑 +𝑤𝑝𝑏𝑑 ≤ 2
∑

𝑜

∑

𝑠

∑

𝑡
𝑥𝑏𝑜𝑠𝑡𝑑 ∀𝑝.𝑏.𝑝 ≠ 𝑏.𝑝 < 𝑏. ∀𝑑 (24)

∑

𝑜

∑

𝑠
𝑦𝑒𝑜𝑠𝑡𝑑 = 1 ∀𝑒.𝑡. 𝑖𝑓 𝑜 ∈ 𝑜′. 𝑖𝑓 𝑠 ∈ 𝑠′.𝑑 = 𝑑𝑎𝑒

(25)

𝑜 − 𝑎𝑟𝑒 ≤ 1 +𝑀

(

1 −
∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑

)

∀𝑒.𝑑. 𝑖𝑓 𝑜′ = 0 (26)

𝑜 − 𝑎𝑟𝑒 ≥ 1 −𝑀

(

∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑

)

∀𝑒.𝑑. 𝑖𝑓 𝑜′ = 0 (27)

𝑓𝑒𝑖 ≥ 𝑡𝑏𝑒𝑖 + 𝑙𝑒𝑛1𝑒𝑖
∑

𝑜

∑

𝑠

∑

𝑡

∑

𝑑
𝑦𝑒𝑜𝑠𝑡𝑑 ∀𝑒.𝑖 (28)

𝑒𝑜𝑠𝑡𝑑 = 0 ∀𝑑 ≠ 𝑑𝑎𝑒.𝑒.𝑜.𝑠.𝑡.𝑑 (29)

𝑏𝑒𝑖 = 𝑡𝑓𝑒𝑖−1 ∀𝑒.𝑖 ≠ 1 (30)
𝑖𝑒𝑑 ≥

∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑′ ∗ 𝑎𝑒 ∀𝑒.𝑑.𝑑′.𝑗 = 1.𝑑′ ≤ 𝑑 < 𝑑′ + 𝑙𝑒𝑛2𝑒𝑗

(31)
𝑤𝑒𝑑 ≥

∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑′ ∗ 𝑎𝑤𝑒 ∀𝑒.𝑑.𝑑′.𝑗 = 2.𝑑′ ≤ 𝑑 < 𝑑′ + 𝑙𝑒𝑛2𝑒𝑗

(32)
∑

𝑒

∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑 ≤ 𝑛𝑢𝑚𝑑 ∀𝑑 (33)

∑

𝑝

∑

𝑠
𝑥𝑝𝑜𝑠𝑡𝑑 +

∑

𝑒

∑

𝑠
𝑦𝑒𝑜𝑠𝑡𝑑 ≤ 1 ∀𝑜.𝑡.𝑑 (34)

𝑏𝑒𝑖 ≤𝑀

(

∑

𝑜

∑

𝑠

∑

𝑡

∑

𝑑
𝑦𝑒𝑜𝑠𝑡𝑑

)

∀𝑒.𝑖 (35)

𝑝𝑜𝑠𝑡𝑑 , 𝜎𝑝𝑡𝑑𝑖, 𝑥𝑖𝑝𝑑 , 𝑅𝑝, 𝑓𝑝𝑏𝑑 ,

𝑤𝑝𝑏𝑑 , 𝑦𝑒𝑜𝑠𝑡𝑑 , 𝑦𝑖𝑒𝑑 , 𝑦𝑖𝑒𝑑 ,∈ {0.1}
1
𝑝𝑖, 𝑡

2
𝑝𝑖, 𝑖𝑑𝑡𝑜𝑑 , 𝑡𝑏𝑒𝑖, 𝑡𝑓𝑒𝑖 ≥ 0 (36)

The objective function presented in Eq. set (1) consists of minimiz-
ng idle and waiting times as well as maximizing the allocation points of
igh-priority patients. Constraint (2) ensures that only one OR and one
urgeon can be allocated to each patient at each time slot. Constraint
3) states that each surgeon can do one surgery at a time slot per day.
onstraint (4) ensures that after the last time slot, no surgery can be
erformed. Constraint (5) states that the surgeon exists at the scheduled
ime. Constraint (6) ensures that the assigned OR for each surgery
s suitable. Constraint (7) is related to the sequence of each stage.
onstraint (8) determines the finish times for each stage. Constraint (9)
nsures that in each slot, the allocated patients to PACU or PHU are less
han the maximum number of beds per day. Constraint (10) computes
he idle time for each OR on each day. Constraint (11) ensures that
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the number of patients in the ICU should not exceed the number of
available beds. Constraint (12) states that the patient will stay in ICU
if the healing period is not over. Constraint (13) ensures that if the
patient’s surgery is not scheduled, the start time will be zero. Constraint
(14) guarantees that the difference between the beginning and finishing
times equals the assigned time slots. Constraint (15) determines the
maximum time slots that each surgeon can do surgeries during the
planning horizon. Constraint (16) confirms that the patient will stay
in the ward if the healing period is not over. Constraint (17) limits the
number of patients in the ward by considering the available capacity
each day. Constraint (18) computes the patients who are scheduled
in their allowed period. Constraints (19) and (20) show the condition
of patients relative to each other in the OR. Constraints (21) and
(22) show the condition of patients relative to each other in recovery.
Constraints (23) and (24) ensure that when a patient is scheduled, its
corresponding sequence variable will take the value of one. Constraint
(25) ensures that if, at the time of the emergency patient’s arrival, at
least one OR is empty, the patient will be accepted. Constraint (26) and
(27) state that when all ORs are full at the arrival time, the patient will
be accepted if at least one OR be free for less than one hour. Constraint
(28) computes the finish time of each stage. Constraint (29) ensures that
in case of accepting an emergency patient, he/she will be operated in
the arrival day. Constraint (30) is related to the sequence of stages.
Constraint (31) ensures that the emergency patient will stay in ICU
if the healing period is not over. Constraint (32) guarantees that the
patient will stay in the ward if the healing period is not over. Constraint
(33) confirms that the number of operated emergency demands will be
less than or equal to the whole demand. Constraint (34) ensures that
just one patient of elective or emergency will be scheduled in a one-
time slot in a day in one OR. Constraint (35) ensures that if the patient
is not operated on, the start time will be zero. Constraint (36) delineates
the type of decision variables.

Constraints (25) to (35) are related to emergency patients. After
adding emergency patients, Eq. (10), which measures the idle time,
should consider both elective and emergency patients. So, it is changed
to constraint (37) as follows:

𝑖𝑑𝑡𝑜𝑑 = 𝑁𝑇 −
∑

𝑝

∑

𝑠

∑

𝑡
𝑥𝑝𝑜𝑠𝑡𝑑 −

∑

𝑒

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑 ∀𝑜.𝑑.𝑡 ≤ 𝑁𝑇 (37)

To solve the model considering both kinds of elective and emergency
patients, all of the above constraints ((2) to (35)) must be considered.

3.5. The model under uncertainty

In this study, the duration of surgery, LOS in upstream and down-
stream units (PHU, PACU, ICU, and ward) and the emergency demand
are considered uncertain. To handle such uncertainty, a robust opti-
mization approach is employed, proposed first by Soyster [47]. Among
those who used this approach, one can mention Wang et al. [48], which
applied a robust linear programming approach to deal with the surgery
scheduling problem with uncertainty. Also, Liu et al. [49] proposed a
scenario-based robust optimization approach to handle the uncertainty
in surgery duration. We used the Soyster method because, to the best of
our knowledge, this method has not been used in any research in this
field, and this method helps the hospital management to prepare itself
in the best way by considering the worst conditions. Fig. 5 illustrates
a method with high conservatism, so-called the worst-case scenario.
Considering that unpredictable occurrences could have happened in
OR against the already planned schedule, one can handle it through
choosing this method. In this regard, we try to examine the result by
considering the worst-case scenario and providing a solution for it.
Based on Soyster’s method, one can have:

𝑈∞ = {𝜉|‖𝜉‖≤𝜑} = {𝜉|‖𝜉j‖≤𝜑∀𝑗∈𝐽i}

𝜑 = 1, 𝜉[−1.1]
7

In the proposed model in Section 3, constraints 8, 12, 16, 26, 27,
28, 31, 32, and 33 include uncertain parameters, comprising uncertain
parameters 𝑑𝑢1𝑝𝑖, 𝑑𝑢

2
𝑝𝑗 , 𝑎𝑟𝑒, 𝑙𝑒𝑛

1
𝑒𝑖, 𝑙𝑒𝑛

2
𝑒𝑗 , 𝑛𝑢𝑚𝑑 . For example, in constraint

(38), the 𝑑𝑢1𝑝𝑖 is assumed uncertain. So, one can rewrite the constraints
(38) to (44), including uncertain parameters as follows.

𝑑𝑢
1
𝑝𝑖 = 𝑑𝑢1𝑝𝑖 + 𝜉𝑝𝑖 ∗ 𝑑𝑢

1
𝑝𝑖 (38)

Where 𝑑𝑢1𝑝𝑖 is called the nominal value, and 𝑑𝑢pi is the deviation from
the nominal value. 𝜉 ∈ [−1,1], and the value of 𝛹 is considered 1.

𝑢̃𝑚𝑑 = 𝑛𝑢𝑚𝑑 + 𝜉𝑑 ∗ 𝑛𝑢𝑚𝑑 (39)

𝑑𝑢
2
𝑝𝑗 = 𝑑𝑢2𝑝𝑗 + 𝜉𝑝𝑗 ∗ 𝑑𝑢

2
𝑝𝑗 ∀𝑝.𝑗 = 1 (40)

𝑙𝑜−𝑎𝑟𝑒 ≤ 1+𝑀

(

1 −
∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑

)

∀𝑒.𝑑.𝑜′ = 0. 𝑎𝑟𝑒 = 𝑎𝑟𝑒+𝜉𝑒 ∗ 𝑎𝑟𝑒

(41)

−𝑙𝑜+ 𝑎𝑟𝑒 +1 ≤𝑀

(

∑

𝑜

∑

𝑠

∑

𝑡
𝑦𝑒𝑜𝑠𝑡𝑑

)

∀𝑒.𝑑.𝑜′ = 0. 𝑎𝑟𝑒 = 𝑎𝑟𝑒 + 𝜉𝑒 ∗ 𝑎𝑟𝑒

(42)

𝑡𝑓𝑒𝑖 ≤ −𝑡𝑏𝑒𝑖 − 𝑙𝑒𝑛1𝑒𝑖
∑

𝑜

∑

𝑠

∑

𝑡

∑

𝑑
𝑦𝑒𝑜𝑠𝑡𝑑 ∀𝑒.𝑖. 𝑙𝑒𝑛

1
𝑒𝑖 = 𝑙𝑒𝑛1𝑒𝑖 + 𝜉𝑒𝑖 ∗ 𝑙𝑒𝑛

1
𝑒𝑖

(43)

< 𝑑′ + 𝑙𝑒𝑛2𝑒𝑗 ∀𝑒.𝑗 = 1. 𝑙𝑒𝑛
2
𝑒𝑗 = 𝑙𝑒𝑛2𝑒𝑗 + 𝜉𝑒𝑖 ∗ 𝑙𝑒𝑛

2
𝑒𝑗 (44)

. Solution method

The presented MIP model studied in Section 3 is based on the
pproach proposed by Vali-siar et al. [4]. They studied a multi-period
ulti-resource OR integrated planning and scheduling model and con-

idered the constraints related to human resources, downstream and
pstream units’ beds, as well as equipment. They also assumed that
HU, surgery and recovery duration is uncertain and used a robust
ptimization approach to handle the uncertainty. Then, they used a
etaheuristic method based on the genetic algorithm (GA) to solve

heir on-hand problem on a large scale.
The surgery planning and scheduling problem addressed in this

aper is related to the study conducted by Vali-siar et al. [4]. The
ain difference between the two papers is that we attempted not only

o assign elective patients, but also to consider emergency patients.
lso, we considered priority for elective patients as well. Another
ifference between the two papers is the objective function. We con-
idered minimizing the idle and waiting time and maximizing the
llocation points of high-priority patients, while [4] aimed to minimize
he tardiness, idle and over time. The last difference is that we proposed
he occupancy level coefficient for ICU which has not been studied
n literature so far. Approaching the Pareto-optimal solutions is the
ain goal of the multi-objective procedure [50]. For solving such a

omplex problem, an improved version of the eps-constraint method
Augmented eps-constraints) is used. Since there are three objectives
n the proposed model, the improved version of the eps-constraint
ould be an appropriate method. First, the suggested model considering
ertainty is presented and solved. Then, a robust optimization method,
s a decision-making approach under uncertainty, is used to manage the
xisting uncertainty. Since, in stochastic programming, distributional
nformation about the uncertain parameters is needed, this approach is
ppropriate when the probability distribution of uncertain parameters
s difficult to estimate.
∑

𝑎𝑖𝑗𝑥𝑗 +

[𝑚𝑎𝑥 [
∑

𝜉𝑖𝑗 𝑎̂𝑖𝑗𝑥𝑗

]]

≤ 𝑏𝑖 (45)

𝑗 𝜉∈𝑈 𝑗∈𝑗𝑖
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Fig. 5. U set-in box uncertainty set.
∑

𝑗
𝑎𝑖𝑗𝑥𝑗 +

⎡

⎢

⎢

⎣

𝜓
∑

𝑗∈𝑗𝑖

𝑎̂𝑖𝑗
|

|

|

𝑥𝑗
|

|

|

⎤

⎥

⎥

⎦

≤ 𝑏𝑖 (46)

Constraints (45) and (46) show the generality of the robust opti-
mization method. The value of 𝛹 is considered 1 in Soyster’s method.
We could successfully handle the problem of up to 40 patients, and one
can say that solving such a OR planning and scheduling problem with a
high number of constraints is prominent. The computations for up to 27
patients were performed on a computer with 8 GB RAM and 2.20 GHz,
running on Windows 7 (64-bit), in an acceptable computational time,
while for 30–40 patients, the NEOS Server was used. To compare
the results, the models were solved by the eps-constraint method and
weighting approach. The capacity of each part increased by growing
the number of patients, which means that capacities are assumed to be
proportional to the demands. This is more interesting when one knows
that in real-world conditions, finding acceptable and suitable answers
is necessary.

4.1. Eps-constraint method

Multi-objective programming has more than one objective function,
and there is no optimal solution to optimize all the objective func-
tions simultaneously. A practical technique to solve these problems
is the 𝜀-constraint method. To search for the effects of the desired
functions on each other, as well as to make a fair compromise be-
tween them, an augmented version of the epsilon-constraint technique
[51] is employed to solve the proposed multi-objective surgical ward
planning and scheduling problem. The eps-constraint method is for
producing efficient Pareto-optimal non-dominated solutions in multi-
objective problems. It has been proved that the generated optimal
solutions are efficient solutions to the multi-objective problem. The eps-
constraint method consists of two phases: (1) creation of the pay-off
table (Table 2), (2) use of the ranges from the pay-off table in order to
apply this method. The algorithm can also work with MIP models [51]
since the eps-constraint method transfers a multi-objective model to a
single objective model.

The 𝜀-constraint is an optimization algorithm working with the pre-
defined virtual grid in the objective space and solving different single
objective functions [52]. The readers can refer to Mavrotas [51] for
more explanations about this method.

5. Computational experiments

In this section, the proposed method and mathematical model have
been applied to 12 sample problems on different scales. The number of
patients, ORs, surgeons, days, beds of upstream and downstream units
and ORs’ active hours are changed proportionately with the model’s
size. The duration of surgery varies between 20 to 240 min, and LOS
in ICU and ward ranges between 0 to 4 days. Vali-siar et al. [4]
estimated the durations of surgeries via log-normal distribution. They
8

Table 2
Datasets used for computational analysis.

Total number of allowed time slots 12–24
The duration of PHU, surgery and PACU 20–240 (min)
The occupancy level coefficient 1
LOS in ICU 0–4 days
LOS in ward 0–4 days
Priority of patients 1–10
Number of emergency patients in each day 0–2
Hmax 60–80

also estimated the duration of the patient’s recovery by log-normal
similar to Jebali et al. [53]. In this study, all durations are generated
to the minute and then rounded since 20-min time slots are taken into
account.

In each surgical specialty, the percentage of patients is selected
randomly. Also, the number of ORs, beds in upstream and downstream
units, the duration of surgeries and LOS are generated randomly to
find the best answer. The numerical examples are used to compare the
results of certain and uncertain models, where the results are compared
in three different parts. First, a comparison is conducted between the
results of the certain model with elective patients. In the second part,
the outcomes of the model for elective patients under uncertainty are
reported at first, and then a robust optimization technique is used
to manage uncertainty. Next, the proposed model for elective and
emergency patients under uncertainty is presented. The MILP model is
coded in GAMS 24.1.2, and the improved version of the eps-constraint
is used to solve the problem. Tables 2 and 3 show the datasets used in
this problem.

In Table 4, the solution results of certain models are presented in
terms of the number of scheduled patients, the value of the objective
functions, and the CPU time. As long as we do not know the priorities
of the decision-maker, all Pareto-optimal solutions would be the same.
Since in a multi-objective optimization problem, the probability of
optimizing all objective functions simultaneously is very low, when
there is a conflict between the objectives, improving one of them
worsens the other ones.

In Table 5, the results of elective patients under uncertainty are
provided. Given that Soyster’s method is the most pessimistic and
conservative, the number of scheduled patients has decreased and, in
some cases, has not changed.

Finally, in Table 6, the results of the elective and emergency pa-
tients’ model under uncertainty are reported. As can be seen, and
according to the obtained results, one can say that the number of
scheduled patients in each model is acceptable.

As can be seen in Figs. 6 and 7, and as expected, by increasing the
number of patients and resources, the execution time is increased. By
adding emergency patients, the number of scheduled elective patients
is decreased. Fig. 8 shows this downward trend.
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Table 3
The datasets used in the problems.

No. of
patients

No. of rooms ICU beds Ward beds Surgeons days Time slots

10 4 4 7 4 3 12
13 4 4 7 4 3 12
15 4 4 7 4 3 12
17 4 5 7 4 4 14

4 5 7 4 4 14
23 5 8 10 5 4 20
25 5 9 12 5 4 20
27 6 10 11 5 4 20
30 6 11 12 5 4 20
33 6 10 11 5 5 24
35 6 12 14 5 5 24
40 6 12 14 6 5 24
Table 4
The outputs of the certain model.

No. of
patients

Scheduled
patients

Objective
function #1

Objective
function #2

Objective
function #3

Execution
time

10 8

135 18 59

477.566

136 15 59
137 12 52
138 9 49
140 5 38
141 3 28

13 9

135 18 62

726.746

136 15 71
137 12 51
138 9 47
140 5 40
141 3 30

15 11

132 24 98

860
134 18 92
135 15 62
136 12 76
138 8 36

17 14

204 50 99

1026.829208 34 63
211 24 97
216 11 58

20 16

172 50 87

1092.69176 34 113
179 24 77
184 11 36

23 19

348 80 83

1408.75353 60 120
359 39 116
366 20 88

25 21

372 70 88

4609.62377 50 105
382 33 137
388 17 61

27 24
440 100 132

4885.826447 72 139
454 48 136

30 27 440 83 167 5553.541447 75 199

33 28 425 80 217 4069.956452 67 193

35 28 555 135 177 12155.514600 107 217

40 29 436 110 204 12015.821480 77 141
Figs. 9, 10, 11, and 12 show the Pareto-optimal front and Pareto
urface of two instances. Overall, it can be concluded that coding

model with three functions and solving it via the improved eps-
onstraint method can provide a suitable outcome. By increasing the
ize of the examples, the number of cuts reduces, so the Pareto-optimal
olutions will be reduced. Vali-siar et al. [4] assumed deterministic
9

LOS in the ICU and ward, while the scheduling can be affected by
uncertainty in this stage. Since the capacity of the ICU and ward are
limited, and the LOS in these stages are uncertain in this study, these
parameters are considered uncertain in order to make the conditions as
realistic as possible.
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Table 5
The output of the robust model for elective patients.

No. of
patients

Scheduled
patients

Objective
function #1

Objective
function #2

Objective
function #3

Execution
time

10 8

135 18 52

365.619

136 15 43
137 12 51
138 9 45
140 5 36
141 3 28

13 9

133 21 70

947.550

135 15 60
136 12 53
137 10 53
139 6 46
141 3 31

15 10

132 24 58

899.392
134 18 85
136 12 58
138 8 53
140 4 29

17 14

206 43 54

2320.749209 31 73
212 21 74
217 9 66

20 13

368 80 65

6397.92
372 64 95
376 48 72
382 30 93
388 16 52

23 14

348 80 81

5195.816
352 64 73
356 48 57
362 30 84
368 16 56

25 17

364 90 72

5006.586370 66 111
376 45 68
385 21 77

27 17

447 80 110

7689.804452 59 123
458 39 118
465 20 37

30 18 446 82 144 8561.82448 73 139
Fig. 6. The execution time of the certain model.
According to the capacity of the ICU and its effect on the scheduled
atients and performed sensitivity analysis, it can be concluded that
here is a bottleneck in the system/model which can affect the number
f scheduled patients. The conducted sensitivity analysis is carried out
10
to yield an appropriate vision for the managers and practitioners in the
field, including the existing bottlenecks in the system (see Table 7).

Figs. 14 and 15 show the contradiction between the objective
functions. As it is obvious, improving one objective function makes
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Table 6
The output of the robust model for elective and emergency patients.

No. of elective
patients

No. of scheduled elective
and emergency
patients

Objective
function #1

Objective
function #2

Objective
function #3

Execution
time

10 8+4

128 19 64

1423.369

130 13 65
131 10 55
132 8 54
133 6 41
135 3 30

13 9+4

127 21 71

1013.196

129 15 63
130 12 53
131 10 53
133 6 49
135 3 29

15 10+3

88 26 82

1136.857
90 20 91
92 14 86
94 10 68
97 5 51

17 10+6

197 44 56

1280.878200 32 73
203 22 92
208 10 68

20 11+6

226 53 72

5852.643230 37 98
234 24 75
239 12 77

23 14+6

340 80 56

6464.488344 64 89
348 48 77
354 31 103

25 16+6

204 70 80

6513.962207 58 78
214 33 107
223 11 56

27 18+5

437 83 113

10121.127443 59 138
449 40 135
457 19 53

30 17+5 440 82 139 13741.123472 73 144

33 19+10 665 84 154 13863.854675 80 133

35 25+5 535 91 193 20448.31653 100 168
Fig. 7. The execution time of the robust model for elective and emergency patients.
11
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Fig. 8. Comparison of the mean number of scheduled patients.
Table 7
The scheduled patients with 𝛼 = 0.8.

No. of
patients

No. of
scheduled
patients

Objective
function #1

Objective
function #2

Objective
function #3

Execution
time

15 9

136 15 60

735.186
137 12 31
138 9 40
140 5 38
141 3 26

17 12

208 40 85

1625.983
210 32 78
212 24 90
214 18 88
216 12 41

27 23

448 80 111

6608.920453 60 77
459 39 130
466 20 84

30 26 452 80 199 7727.782454 59 175
Fig. 9. Pareto front for 15 patients (certain).

nother worse. According to the authors’ exploration of the literature, it
ounds that the majority of researchers have used a weighting approach
n these conditions. To conduct an analysis, the obtained results of
he improved version of the eps-constraint and weighting approach
re compared. By doing so, the decision maker’s priority is taken into
ccount from the beginning.
12
Fig. 10. Pareto front for 25 patients (certain).

In order to more closely examine the impact of ICU capacity on the
number of patients scheduled for surgery, in Fig. 16, we considered
issues with the number of different capacities. First, we solved the
problem considering the capacity of 2 and then increased the capacity
to 5. As it is clear from the results and we expected the number of
planned patients would increase. In fact, based on Figs. 13, 14, 15, and
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Fig. 11. Pareto front surface for 15 patients.

Fig. 12. Pareto front surface for 25 patients.

6, it can conclude that it acts like a bottleneck in the model, and by
llocating a suitable and reasonable capacity based on the opinion of
he hospital management and considering economic issues, the impact
f this bottleneck on the number of planned patients can be greatly
educed.

In this regard, different weights are considered to achieve more
esults, as reported in Tables 8 and 9. As one can imply, when the
ssigned weight to the second objective increases, the number of se-
ected patients for surgery reduces, and when the weights of objective
unctions #1 and #3 increase, the number of patients increases, too.
owever, totally the obtained results of the weighting approach demon-

trate that the average number of scheduled patients in comparison
o the eps-constraint is lower. By using the eps-constraint method,
areto-optimal fronts are attained for each sample, and accordingly,
his method is proposed.

.1. Managerial insights

To have a better sense of the impact of this research, some impor-
ant managerial insights could be presented according to the obtained
esults. The conducted analyses could be useful for either helping
anagers to make a specific decision or avoiding a wrong option,

tc. The findings of the current study have fundamental managerial
mplications. Since the ORs review is considered in relation to the
pstream and downstream units, the study of ORs should not be carried
ut as an isolated unit. By doing so, hospitals can benefit from the
indings of such analyses.

As mentioned, ICU has been detected as a bottleneck in such a
odel, and accordingly, as one of the most important implications, it

s strongly recommended to start the planning from the ICU since it
ould be more efficient altogether. Second, it would be effective to
13
Table 8
The used weights in the weighting method (elective patients’ certain model).

W1 W2 W3 No. of scheduled patients

10 patients

0.8 0.1 0.1 7
0.7 0.1 0.2 7
0.6 0.1 0.3 7
0.6 0.3 0.1 5
0.3 0.5 0.2 5
0.2 0.6 0.2 5
0.1 0.7 0.2 4
0.1 0.1 0.8 7

15 patients

0.8 0.1 0.1 11
0.7 0.1 0.2 11
0.6 0.1 0.3 11
0.6 0.3 0.1 11
0.3 0.5 0.2 6
0.2 0.6 0.2 5
0.1 0.7 0.2 5
0.1 0.1 0.8 11

20 patients

0.8 0.1 0.1 19
0.7 0.1 0.2 19
0.6 0.1 0.3 19
0.6 0.3 0.1 17
0.3 0.5 0.2 14
0.2 0.6 0.2 9
0.1 0.7 0.2 8
0.1 0.1 0.8 19

25 patients

0.8 0.1 0.1 22
0.7 0.1 0.2 22
0.6 0.1 0.3 21
0.6 0.3 0.1 21
0.3 0.5 0.2 16
0.2 0.6 0.2 12
0.1 0.7 0.2 9
0.1 0.1 0.8 21

30 patients

0.8 0.1 0.1 28
0.7 0.1 0.2 26
0.6 0.1 0.3 26
0.6 0.3 0.1 20
0.3 0.5 0.2 21
0.2 0.6 0.2 14
0.1 0.7 0.2 26
0.1 0.1 0.8 26

take priority for the objective functions into account since it can reduce
the number of patients and also can overshadow other features, such
as increasing the idle time of ORs and the number of surgeries carried
out by each surgeon.

6. Conclusion and future streams

Surgical ward planning and scheduling are one of the most im-
portant issues among healthcare problems. Many researchers have
proposed several different methods to improve the quality of planning
and optimal use of resources. In this paper, a multi-objective mathe-
matical model was presented for planning and scheduling elective and
emergency patients by considering integrated ORs under uncertainty.
Beds of the Pre-Operative Holding Unit (PHU), recovery, Intensive
Care Unit (ICU), and ward were taken into account in this study.
To handle the on-hand problem, a mixed integer programming (MIP)
model was also formulated. Constraints related to the patients’ priority,
downstream and upstream limitations, different ORs and surgeons’
availability were taken into consideration, as well. The model consists
of three objectives, where the first one minimizes idle time, the second
one minimizes waiting time, and the last one maximizes the allocation
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Fig. 13. The scheduled patients with 𝛼 = 1 and 𝛼 = 0.8.

Fig. 14. Contradiction between the objective functions #1 and #2.

Fig. 15. Contradiction between the objective functions #2 and #3.

14
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Fig. 16. Comparing the number of planned patients with changes in ICU capacity.
Table 9
The used weights in the weighting method (elective and emergency robust models).

W1 W2 W3 No. of scheduled patients
(Elective, Emergency)

10 patients

0.8 0.1 0.1 8,4
0.7 0.1 0.2 9,5
0.6 0.1 0.3 9,5
0.6 0.3 0.1 5,5
0.3 0.5 0.2 5,5
0.2 0.6 0.2 4,5
0.1 0.7 0.2 4,4
0.1 0.1 0.8 9,4

15 patients

0.8 0.1 0.1 8,4
0.7 0.1 0.2 8,5
0.6 0.1 0.3 8,4
0.6 0.3 0.1 5,4
0.3 0.5 0.2 4,4
0.2 0.6 0.2 2,5
0.1 0.7 0.2 2,4
0.1 0.1 0.8 8,4

20 patients

0.8 0.1 0.1 10,4
0.7 0.1 0.2 10,4
0.6 0.1 0.3 11,4
0.6 0.3 0.1 8,6
0.3 0.5 0.2 8,6
0.2 0.6 0.2 8,5
0.1 0.7 0.2 8,5
0.1 0.1 0.8 11,4

25 patients

0.8 0.1 0.1 14,4
0.7 0.1 0.2 16,5
0.6 0.1 0.3 15,5
0.6 0.3 0.1 11,5
0.3 0.5 0.2 10,5
0.2 0.6 0.2 9,5
0.1 0.7 0.2 9,5
0.1 0.1 0.8 15,5

points of high-priority patients. The surgery duration and length of stay
(LOS) in PHU, PACU, ICU and ward were considered uncertain, and a
robust optimization approach was then used to manage the uncertainty.
Three models were presented in this study: elective patients’ certain
15
Table 9 (continued).
W1 W2 W3 No. of scheduled patients

(Elective, Emergency)

30 patients

0.8 0.1 0.1 18,4
0.7 0.1 0.2 16,4
0.6 0.1 0.3 15,4
0.6 0.3 0.1 11,6
0.3 0.5 0.2 15,5
0.2 0.6 0.2 11,6
0.1 0.7 0.2 6,6
0.1 0.1 0.8 18,5

model, elective patients robust, as well as elective and emergency
patients’ robust model.

To evaluate the proposed MIP model, 12 instances for the elective
patient’s certain model, 9 samples for the elective patient’s robust
model, as well as 11 instances for elective and emergency patient’s
robust model were generated. Almost all instances were efficiently
solved in terms of CPU time. Moreover, through the proposed arrange-
ment, at least 60% of patients could successfully be planned, while in
some examples, this rate touched 80 to 90%. It should be emphasized
that in this study, we tried to find the exact answer to this problem.
If the conditions for the admission of an emergency patient are not
provided, he/she will be transferred to another hospital and will be
out of schedule. As predicted, by taking the uncertainties into account,
the number of scheduled patients was reduced. Having analyzed the
model, the ICU was detected as the bottleneck, and based on this
achievement, an efficient approach was provided, where the elective
patients should be first planned which are in serious need of ICU
according to its capacity, and then the left free capacity of ORs could be
assigned for other operations. For solving the proposed models, an im-
proved eps-constraint method and weighting approach were employed
and conducted extensive analyses, including the objective function
value, computational time, and the number of scheduled patients, were
reported.

For the weighting method, different weights were considered to
measure their effects on scheduled patients. By comparing the results,
it could be concluded that the eps-constraint technique outperforms the
weighting approach. The results indicated that the values of objective
functions are satisfactory, and the number of scheduled patients and
the execution time are acceptable. Taking the ICU into account as
a bottleneck in this model, Occupancy Level Coefficient (OLC) was
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suggested to increase the readiness of hospitals when the system is
faced with an emergency demand. By examining the results, 𝛼 = 0.8
was identified as a practical value for OLC.

This article acknowledges the limitations of the proposed model.
While the model was designed as an integrated one, it was not feasible
to solve it on a large scale with the proposed approach. Additionally,
we only accounted for one surgeon per surgery, thereby excluding
surgeries that require multiple surgeons. As a future direction, it is im-
perative to develop efficient methods for large-scale problem-solving,
taking into account more resource constraints (such as nurses and
equipment) and financial limitations. These areas present promising
avenues for future research.
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