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Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent 
advances in deep learning have demonstrated potential in supporting clinical decisions. This paper 
introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and 
reducing dataset bias. The model integrates three components: (i) a Classification Stream, utilizing a 
CNN to categorize images into 16 lesion types (baseline model), (ii) a Guidance Stream, which aligns 
class activation maps with clinically relevant areas using ground truth segmentation masks (GAIN 
model), and (iii) an Anatomical Site Prediction Stream, improving interpretability by predicting lesion 
location (GAIN+ASP model). The development dataset comprised 2765 intra-oral digital images 
of 16 lesion types from 1079 patients seen at an oral pathology clinic between 1999 and 2021. The 
GAIN model demonstrated a 7.2% relative improvement in accuracy over the baseline for 16-class 
classification, with superior class-specific balanced accuracy and AUC scores. Additionally, the GAIN 
model enhanced lesion localization and improved the alignment between attention maps and ground 
truth. The proposed models also exhibited greater robustness against dataset bias, as shown in 
ablation studies.
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More than 300,000 oral cancers (OC) are diagnosed annually worldwide.1 These cancers have a much lower 
probability of survival (< 50%) than common cancers (e.g., breast, prostate)2, and one of the highest morbidity 
and suicide rates of all cancers. Importantly, more than half of all patients present with an advanced-stage 
disease; this proportion has not decreased in the past 40 years3,4. An advanced stage at diagnosis is associated 
with a lower probability of survival, higher health care cost, and increased risk of significant impairment and 
deformity5,6. Hence, early diagnosis plays a key role in reducing the burden of this disease.

An abnormal change in the soft tissue of the oral cavity (oral lesion) can be one of the earliest signs of OC. 
Hence, early diagnosis of OC can be achieved by correctly situating any oral soft tissue lesion in the continuum 
from normal mucosa to malignancy. For example, screening for abnormal oral lesions, even based on visual 
examination alone, has been shown to significantly reduce the morbidity and mortality associated with OC 
in high-risk populations7–10. However, many general dentists do not appear to adopt a systematic approach 
for evaluating oral lesions11,12 and also report major challenges in diagnosing oral lesions12–14. For example, 
half of the general dentists surveyed in a study felt that their knowledge and training were not up to date in 
diagnosing oral lesions14. Furthermore, there is a wide variety of oral lesions with similar clinical appearances, 
and many systemic conditions have oral manifestations, which make them more difficult to diagnose13,15–17. 
These difficulties, combined with limited clinical training in oral pathology, lead to high diagnostic uncertainty 
and delay16,18,19.

Deep learning algorithms have demonstrated remarkable success in various image recognition tasks20. In 
the context of oral lesion classification, there have been several attempts to develop CNN-based models to aid 
in clinical decision-making21–27 Almost all of these previous attempts have been focused on the classification 
task of cancer vs no-cancer. This approach may miss a large group of potentially malignant oral lesions, where 
an early and accurate diagnosis and excision could prevent a malignant transformation. Furthermore, two key 
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challenges need to be addressed to enhance the practicality and reliability of these models in clinical practice: 
interpretability and dataset bias28–30.

Interpretability refers to the ability to understand and explain the model’s decision-making process, enabling 
clinicians to trust and interpret the predictions from the model effectively. While CNNs have demonstrated 
impressive performance in various domains, they are often considered black-box models31, making it difficult to 
ascertain the underlying features and reasoning behind their predictions32. This lack of interpretability hinders 
their adoption in clinical settings, where explanations and insights are crucial for informed decision-making and 
building trust between the model and healthcare professionals33,34.

Furthermore, dataset bias, including oral lesion classification, is common in medical image analysis35. Biases 
can arise due to variations in imaging conditions, equipment, patient demographics, and lesion characteristics, 
among other factors28,36. These biases can introduce unwanted confounding factors and affect the generalization 
ability of deep learning models37. Consequently, the models may exhibit poor performance when presented 
with data that significantly deviates from the training distribution, thereby limiting their clinical utility and 
potentially leading to misdiagnosis or inadequate treatment plans38,39.

To address these challenges, we propose a deep learning model for oral lesion classification that emphasizes 
interpretability and robustness against dataset bias. Our method draws inspiration from the existing GAIN 
(Guided Attention Inference Network) framework, a weakly supervised semantic segmentation approach40. 
While GAIN has been previously proposed and utilized in other domains41,42, our contribution lies in its 
adaptation and application specifically for the domain of oral lesions classification task. Moreover, our 
approach also aims to address the issue of dataset bias43 by leveraging segmented masks to guide the attention 
of a convolutional neural network (CNN) during training. These masks highlight the relevant regions within 
oral cavity images, enabling the model to focus on the informative areas while suppressing the influence of 
irrelevant or confounding factors. By incorporating this guidance mechanism, our approach reduces the impact 
of variations in imaging conditions, patient demographics, and lesion characteristics that contribute to dataset 
bias44. Furthermore, we augment the network with the task of predicting the anatomical location of the lesion 
within the oral cavity image, considering eight potential anatomical locations. This augmentation serves a dual 
purpose: It enriches the model’s interpretability and capitalizes on the standard set of CNN features shared 
between the anatomical site prediction and lesion classification tasks. Our underlying hypothesis is rooted in the 
idea that capturing the inherent relationship between lesion types and their corresponding anatomical sites can 
yield performance improvements for the overall model, thereby amplifying its clinical utility45.

Here, we present a comprehensive evaluation of our proposed approach on a dataset of oral cavity images 
encompassing 16 different types of lesions. We compare the performance of our method with state-of-the-art 
approaches and demonstrate its effectiveness in achieving accurate and interpretable oral lesions classification. 
Additionally, we assess the robustness of our model to dataset bias by conducting experiments on diverse data 
subsets.

Results
Our approach of incorporating guided attention considerably improved the performance of the model compared 
to the standard fine-tuning of EfficientNet-B5 for the oral lesion classification task, with the added advantage of 
improved interpretability and robustness against dataset bias.

Oral lesion classification performance
The class-specific and overall performance metrics are presented in Table 1. The GAIN model showed 7.2% 
relative improvement in balanced accuracy, increasing from 73.4 to 78.7%. Additionally, the model showed 
an improved brier score and comparable AUC values. Although the GAIN+ASP model exhibited modest 
incremental performance gains compared to the GAIN model, it still surpassed the baseline performance by 
2.8% relative improvement.

Class-specific metrics revealed that the GAIN model achieved clear improvements in balanced accuracy for 
all classes except two, compared to the baseline model. However, for those two classes the GAIN+ASP model 
showed comparable accuracy to the baseline model. Notably, adding anatomical site classification improved 
the discriminatory power of the model for the majority (11 out of 16) classes, with AUC values ranging from 
83.7 to 99.7%. The GAIN model showed significant improvements in balanced accuracy for Squamous Cell 
Carcinoma (oral cancer) and Mucocele lesion classes, with 10% and 16% relative improvements over the 
baseline, respectively. Moreover, the GAIN and GAIN+ASP models improved balances accuracy and F1 scores 
when considering broader class labels based on prognosis of lesions (non-benign vs benign vs premalignant vs 
malignant), suggesting a improvement in potential clinical utility (Appendix Table A1).

Anatomical site classification performance
The GAIN+ASP model showed exceptional performance in the classification of anatomical sites, achieving an 
overall balanced accuracy of 91.6%. Site-specific accuracies ranged from 76.9 to 94.9%, as detailed in Table 1. 
Furthermore, the model showed strong discriminatory abilities between different anatomical sites, with AUC 
values spanning from 92.3 to 98.78%. The results underscore the model’s robustness and effectiveness in 
distinguishing between various anatomical locations.

Improvement in interpretability
The interpretability of our proposed methodology was evaluated by comparing the Intersection over Union (IoU), 
and Dice-Sørensen coefficient (DSC) between the baseline model and our methods, GAIN and GAIN+ASP. The 
IoU measures the overlap between the attention maps and ground truth annotations, indicating the alignment 
between the generated maps and the actual lesion regions. Our GAIN+ASP model showed a 6.5% relative 
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improvement in IoU compared to the baseline model, suggesting improved agreement. Similarly, the DSC, which 
measures the similarity between the attention maps and annotations, showed a 5% relative enhancement with 
the GAIN+ASP method compared to the baseline. We note that these improvements were also observed in the 
GAIN model, which employs guided attention alone. Improving the overall agreement between the generated 
attention maps and ground truth segmentation maps may not fully capture the dimensions of performance gain. 
It is particularly important for the guidance approach to enhance the attention on those test images where the 
baseline model performs poorly. As shown in Tables 2 and 3 , our models, GAIN and GAIN+ASP, significantly 
improved the IoU for test images falling into the lowest quartile of attention scores in the baseline model, with 
relative improvements exceeding 100%. The gradient of relative improvement across quartiles at baseline may 
indicate the inherent performance limitations of the baseline model. However, given that our primary task is 
image-level classification rather than segmentation of oral lesions, the implications of these improvements in 
attention are only evaluated as a secondary outcome.

Furthermore, the visual comparison of attention maps between the baseline and GAIN, as shown in Fig. 1, 
reveals the improved alignment of attention with ground truth regions in our approach. The attention maps 
clearly indicate the regions of interest that the model focused on when making predictions. These regions aligned 
well with known characteristics and diagnostic indicators of the respective oral lesions, enabling clinicians to 
gain insights into the model’s decision-making process and identify key features contributing to oral lesion 

Metric (↑ ) Baseline GAIN GAIN+ASP

IoU 0.2454 0.2582  0.2614

DSC 0.3470 0.3594  0.3647

Table 2.  Metrics for interpretability. Significant values are in bold.  IoU = intersection over union, DSC = 
dice-sørensen coefficient

 

 Baseline GAIN  GAIN+ASP

 BS (↓)  BA (↑ ) AUC (↑ )  BS (↓) BA (↑ ) AUC (↑ )  BS (↓)  BA (↑ )  AUC (↑ )

 Oral lesion classes

 Actinic cheilitis solar 0.022 0.953 0.981 0.024 0.973 0.991 0.020 0.926 0.981

 Aphthous ulcers 0.053 0.648 0.855 0.054 0.685 0.844 0.051 0.656 0.881

 Cheek lip tongue chewing 0.057 0.522 0.837 0.057 0.578 0.700 0.056 0.576 0.837

 Denture stomatitis 0.012 0.896 0.986 0.013 0.778 0.935 0.013 0.890 0.955

 Fordyce granules 0.017 0.732 0.879 0.015 0.787 0.937 0.014 0.699 0.920

 Geographic tongue 0.152 0.780 0.960 0.137 0.866 0.968 0.150 0.799 0.973

 Gingival hyperplasia 0.027 0.767 0.851 0.030 0.702 0.835 0.028 0.789 0.862

 Gingival cyst 0.017 0.788 0.910 0.016 0.793 0.912 0.018 0.810 0.800

 Gingivitis 0.029 0.773 0.694 0.031 0.774 0.810 0.029 0.736 0.686

 Hairy tongue 0.037 0.913 0.966 0.037 0.870 0.952 0.035 0.900 0.972

 Leukoedema 0.016 0.781 0.913 0.015 0.797 0.934 0.016 0.857 0.933

 Lymphoepithelial cyst 0.026 0.661 0.831 0.024 0.716 0.772 0.024 0.616 0.744

 Lymphoid tissue 0.028 0.814 0.835 0.025 0.844 0.869 0.026 0.826 0.935

 Mucocele 0.052 0.599 0.827 0.049 0.752 0.841 0.048 0.695 0.846

 Palatal papillomatosis 0.008 0.890 0.996 0.011 0.918 0.974 0.008 0.891 0.997

 Squamous cell carcinoma 0.126 0.596 0.885 0.117 0.696 0.850 0.123 0.642 0.924

 Lesions overall 0.339 0.734 0.902 0.327 0.787 0.893 0.330 0.755 0.914

 Anatomical sites

 Buccal-mucosa 0.034 0.853 0.923

 Floor-of-mouth 0.017 0.769 0.947

 Gingiva 0.043 0.870 0.939

 Inner-lip 0.028 0.910 0.983

 Outer-lip 0.019 0.920 0.951

 Palate 0.025 0.893 0.985

 Tongue 0.101 0.949 0.987

 Sites overall 0.136 0.916 0.972

Table 1.  Comparison of baseline and our methods. Best metrics in each row is highlighted. GAIN=the model 
with classification and guidance streams, GAIN+ASP = model with additional anatomical site classification 
stream, BS = Brier Score, BA = Balanced accuracy, AUC = Area under ROC curve
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classification. This interpretability aspect is crucial for building trust and confidence in the model’s predictions, 
thereby making it more suitable for integration into clinical practice.

Mitigating dataset bias: prediction of implausible combinations (true zeros)
We quantified the number of implausible combinations of oral lesion class and anatomical site (based on ground 
truth labels) predicted by each model, as shown in Table 4. By definition, all implausible combination predictions 
are incorrect classifications. The GAIN model reduced the number of implausible predictions to 62, a significant 
improvement from the 109 seen in the baseline model, reflecting a 43% relative improvement. Whereas, the 
GAIN+ASP only reduced the number of implausible predictions marginally compared to the baseline. Albeit 
surprising, this increase in number of implausible predictions with the addition of anatomical site classification 

Fig. 1.  Comparison of attention maps with and without guidance. We observe that the attention maps are 
significantly improved with our method compared to the baseline.

 

 Average IoU (% change from baseline) (↑ )

Quartiles of IoU

Baseline GAIN GAIN+ASP(Based on baseline)

First 0.015 0.042 (+ 
182.6%)

0.040 (+ 
171.9%)

Second 0.106 0.121 (+ 14.4%) 0.132 (+ 24.7 %)

Third 0.293 0.298 (+ 1.6%) 0.301 (+ 2.8%)

Fourth 0.567 0.571 (+ 0.7%) 0.571 (+ 0.7%)

Table 3.  Improvement in IoU with GAIN and GAIN+ASP models by quartiles of IoU of the baseline model.
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task to the GAIN model could be attributed to the shared parameters of the CNN feature extractor backbone 
and the approximately similar contributions of the loss functions Lcl and Las as identified by the optimal hyper-
parameter values of α and γ in the combined loss function, Ltotal (see Appendix Tables A2 and A3).

Mitigating dataset bias: induced data zeros
To evaluate our models for robustness against dataset bias, we removed all images with ground truth diagnosis 
of Mucocele occurring at the outer lip site from the training set, effectively introducing Data Zero combination 
as described in methods section. We then evaluated the models’ ability to mitigate this bias by examining the 
number of correctly predicted Mucocele lesions at the outer lip site in the test dataset (Table 5). Our GAIN+ASP 
model showed significant improvement, correctly predicting 9 out of 15 images, compared to the baseline 
model’s 3 out of 15 correct predictions. Similarly, the GAIN model, without anatomical site prediction, also 
showed similar ability to mitigate dataset bias by correctly predicting 8 out of 15 images.

In summary, our experimental results validate the effectiveness of our proposed methodology for oral 
lesion classification. Our approach outperforms the baseline model in terms of accuracy, discrimination ability, 
and calibration. Additionally, the generated attention maps exhibit better alignment with the ground truth 
annotations, enhancing interpretability. These findings highlight the benefits of integrating additional guidance 
loss and anatomical site prediction in our methodology, resulting in improved performance, interpretability and 
robustness against dataset-bias compared to the baseline model.

Related work
Rokshad et al. recently reviewed the literature on previous attempts on oral lesion classification from intra-
oral images using deep learning approaches27. Majority of primary studies identified in that review focused on 
binary classification task (e.g., suspicious vs non-suspicious46) or broad multi-class classification (e.g, ulcer vs 
papule vs macule23, normal vs benign vs premalignant vs malignant47). Although, these approaches might have 
some clinical value, fine-grained multi-class classification as clinical diagnosis level has higher clinical utility. 
In our work we have focused on predicting 16 histopatholgically confirmed diagnosis classes. Moreover, a key 
limitation of all most all of the previous work in this area is the lack of investigation of explainability methods.

Comparable to the work presented here, Figueroa et al. implemented a guided attention network, with 
minimal adaptation to the original GAIN approach, to classify intra-oral images into suspicious and non-
suspicious lesions48. In addition to the difference in fundamental task of binary classification and use of human 
labelled ground truth, in this work, we introduced anatomical site classification task in addition to the diagnostic 
classification task. Our adaptation was particularly motivated to mitigate dataset bias, which the previous work 
did not explore.

Welikala et al. on the other had used a soft attention approach with the attention weights estimated from 
specific layers of the architecture rather than a shared parameter approach of GAIN and did not investigate the 
impact of their approach on dataset bias46. Moreover, both of these previous approaches reported only marginal 
improvement in classification accuracy, whereas our approach shows significant improvement in classification 
accuracy and explainability with the added advantage of mitigation of dataset bias.

Conclusion
In this paper, we propose a deep learning-based approach for oral lesion classification that emphasizes 
interpretability and tackles dataset bias. Our methodology, utilizing the Guided Attention Inference Network 
(GAIN) framework, generates attention maps to highlight important regions in oral cavity images and 
promote trust between the model and healthcare professionals. By incorporating guidance loss and pixel-level 
annotations, our approach mitigates dataset bias and enhances generalization. Experimental results demonstrate 

 Baseline  GAIN  GAIN+ASP

Correct preds (↑) 3/15 8/15  9/15

Table 5.  Number of correct predictions of Mucocele lesion type on Outer-lip anatomical site with different 
methods. Our methods with GAIN and ASP effectively minimizes the influence of dataset bias. Significant 
values are in bold.

 

 Baseline

 GAIN  GAIN+ASP

Plaussible (↑ ) Implaussible (↓) Plaussible (↑ ) Implaussible (↓)

Plaussible (↑) 579 (84.2%) 567  12 543 36

Implaussible (↓) 109 (15.8%) 59  50 41 68

688 (100%) 626 (91.0%)  62 (9.0%) 584 (84.9%)  104 (15.1%)

Table 4.  Number of implausible lesion predictions for different methods. Our methods with GAIN model 
effectively reduces the implausible predictions compared to baseline. Whereas, the GAIN+ASP model shows 
marginal improvement over baseline model. Significant values are in bold.

 

Scientific Reports |        (2024) 14:31700 5| https://doi.org/10.1038/s41598-024-81724-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the effectiveness of our approach, outperforming baselines in accuracy and interpretability, with robustness to 
dataset bias.

Our research has significant implications for clinical practice, aiding clinicians in making informed decisions, 
fostering trust in automated systems, and improving patient outcomes. Future research can explore advanced 
interpretability techniques and incorporate multi-modal information to further improve accuracy and clinical 
utility. Overall, our work contributes to accurate and interpretable oral lesion classification, advancing patient 
care in oral healthcare.

Methods
Our method integrates three key components: (i) classification stream, (ii) guidance stream, and (iii) anatomical 
site prediction stream.

Classification stream
The classification stream is analogous to a typical multiclass classification using CNNs. In the classification 
stream, the network is trained using the oral cavity images, where each image is labeled with one of the 16 types 
of different lesions. During training, the network learns to extract relevant features from the input images and 
optimize its parameters to minimize the classification loss; typically computed using a suitable loss function, 
such as cross-entropy loss.

Guidance stream
The guidance stream is introduced to provide additional guidance to the network about the classification task. 
This guidance stream, denoted as Sg , utilizes external guidance, such as pixel-level segmentation masks, to 
guide the network’s attention more precisely. By leveraging pixel-level labels, we are able to provide detailed 
guidance to the network regarding the specific regions of interest in the oral cavity images. This stream operates 
in parallel with the Classification Stream and shares the same network parameters (Fig. 2). The first step in this 
stream is to generate the trainable attention maps to influence the network’s learning. The attention maps reflect 
the areas in the oral cavity images which contributes to the network’s final prediction. These attention maps can 
be utilized further during training in order to promote the network to focus it’s attention on region of interest in 
the image. By training the network to focus on the relevant regions, we aim to improve the overall classification 
performance and interpretability of the network’s decision-making process as well as mitigate the dataset bias 
for improved generalization.

To generate the attention maps, we leverage the intermediate feature maps obtained from the Classification 
Stream. These attention maps are generated using the fundamental framework of Grad-CAM (Gradient-
weighted Class Activation Mapping)49. Given an input image, we obtain the activations of the units in a specific 
convolutional layer, denoted as fl,k , where l represents the layer index and k represents the unit index. For each 
class c corresponding to the ground-truth label, we calculate the gradient of the class score ŷc with respect to the 
activations fl,k . These gradients are then subjected to global average pooling to derive the neuron importance 
weights wc

l,k .

	
wl,k

c = GAP
(

∂ŷc

∂fl,k

)

where GAP(·) represents the global average pooling operation. These importance weights reflect the contribution 
of each activation map to the prediction of class c. We then apply a 2D convolution operation on the activations 
fl using wc as kernel weights, which effectively generates map with a combination of activations. Finally, the 
ReLU operation is applied to obtain the attention map Ac as shown in the equation.

Fig. 2.  Visual representation of our approach with both the classification and guidance streams, denoted as 
GAIN.
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	 Ac = ReLU (conv(fl, wc))

The resulting attention map Ac represents the regions in the image that contribute most to the network’s 
prediction of class c. Our hypothesis is that the end-to-end trainable attention map Ac influences the network’s 
learning by effectively focusing on relevant regions, thereby making predictions more plausible within the area 
of interest. These attention maps, combined with pixel-level annotations, provide supplementary information 
that guides the network in accurately identifying and understanding the characteristics of oral lesions. The 
discrepancy between the attention maps and the provided pixel-level annotations is calculated by the guidance 
loss, denoted as Lg . This loss encourages the attention maps to align with the precise regions of interest defined 
by the external supervision (e.g. pixel-level segmentation masks), leading to more accurate and detailed attention 
maps. We define the guidance loss Lg  as:

	
Lg = 1

n

∑
(Ac − Hc)2

where Ac is the generated attention map and the Hc represents the pixel-level mask highlighting the region of 
interest.

Anatomical site prediction stream
Expanding upon our approach, we introduce an auxiliary anatomical site prediction task in the pipeline. 
Illustrated in Fig. 3, this extension involves the integration of the anatomical site classification task alongside 
the existing lesion classification stream and the guidance stream with attention loss. Notably, all three streams 
utilize a common set of CNN features. However, a new MLP head is introduced specifically for the anatomical 
site prediction task. The neural network is tasked with predicting the precise anatomical location of the lesion, 
selecting from a set of eight potential locations. To achieve this, we employ a cross-entropy loss function. It 
is important to highlight that this multifaceted approach aims to maximize the benefits derived from shared 
features, thus enhancing the model’s performance that comprehensively addresses both lesion classification and 
anatomical site prediction tasks.

Our hypothesis posits a fundamental correlation between anatomical sites and lesion types (see the Dataset 
bias section below), asserting that the ability to learn these correlation structures may enhance the performance 
of the model in the lesion prediction task. This premise builds on the notion that recognizing the likelihood of 
certain lesions appearing in specific anatomical areas can improve the model’s ability to identify those lesions.

The model, by recognizing the anatomical context, gains a richer set of features that are inherently valuable 
for distinguishing between different types of lesions. This is not a unidirectional benefit; the insight gained from 
predicting the anatomical site feeds back into the lesion prediction task. Consequently, understanding where 

Fig. 3.  Visual Representation of our approach that integrates the classification, guidance, and anatomical site 
prediction streams, denoted as GAIN+ASP.
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a lesion is likely to occur can provide additional learning signal to the network during training. This dual-task 
learning framework not only improves the model’s predictive accuracy but also its interpretability. When the 
model predicts a lesion, it also provides the anatomical context, offering a more comprehensive understanding 
of its prediction.

Combining the streams
We bring together the three streams by optimizing a finely-tuned loss function, denoted as Ltotal. This function 
harmonizes the insights drawn from each stream by combining the classification loss (Lcl) with the guidance 
loss (Lg), and the anatomical site classification loss (Las). This combined loss function is given as:

	 Ltotal = αLcl + βLg + γLas

Here, α, β, and γ serve as weighting parameters that adjust the contribution of each loss component to the 
total loss. By optimizing the combined loss function, the network learns to enhance its focus on input images, 
incorporating both the discriminative features captured by the classification stream and the refined attention 
maps from the guidance stream. This joint optimization process not only sharpens the model’s focus on relevant 
image regions but also equips it with an understanding of the intricacies involved in oral lesion identification, 
thereby reducing dataset bias and enhancing overall predictive performance. The detailed algorithm of our 
method is presented in the appendix and implementation in pytorch is provided ​h​t​t​​​​p​s​​:​/​/​​g​​i​s​t​.​g​​i​t​h​u​b​.​c​​o​m​/​M​a​d​
a​t​h​i​l​S​A​/​4​8​c​a​8​4​3​7​8​e​3​9​3​b​7​7​3​7​3​1​1​d​1​8​d​1​c​0​b​5​a​a​​​​​.​​

Dataset and pre-processing
Data source
We established a retrospective cohort of patients who consulted with the oral pathologist in our team (PC) from 
1999 to 2021. During this period, 2,765 images across 16 oral lesion classes were compiled from 1079 patients 
referred to the oral pathologist. Dental experts in the team, meticulously cleaned the dataset for quality by 
removing images with invisible lesions or multiple lesions in the same image, resulting in 1,888 typical images 
of 16 oral lesion types (Fig. 4a).

The images were collected by oral pathologists as part of the routine clinical examination of patients with 
oral lesions and were included in their electronic health records. The images were captured using digital cameras 
of varying quality under dental clinic lighting conditions. Ground truth labels for the oral lesion types were 
obtained from histopathology reports (the gold-standard diagnosis) for lesions requiring a biopsy (e.g., pre-
malignant lesions) and from expert clinician diagnoses for lesions not requiring a biopsy. Two dentists annotated 
the oral lesions, generating the ground truth labels for the segmentation masks.

Fig. 4.  Dataset characteristics. (a) Illustrates the distribution of oral lesion classes, with geographic tongue 
being the most prevalent. (b) Presents the data zero and true zero combinations. The grey-shaded cells (data 
zeros) indicate plausible combinations for which no data is available in our dataset, the black-shaded cells (true 
zeros) represent implausible combinations, and the white cells represents plausible combinations where data is 
available.
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All steps of this research were conducted in accordance with the Declaration of Helsinki. No identifiable 
information or images are presented in this manuscripts. An informed consent was obtained from all participants 
during the data collection process. The project received approval from the Research Ethics Review Board at 
McGill University [Protocol no: A07-M40-21B].

Class imbalance
Class imbalance is a prevalent challenge in oral lesion classification tasks, where certain lesion types occur 
infrequently50. Figure 4a illustrates the distribution of oral lesion classes in our dataset. To address the impact of 
class imbalance, we employed class weighting during the training process51. Class weights were calculated as the 
inverse of the class frequencies in the training dataset. Lesion types with lower occurrences were assigned higher 
weights, while lesion types with higher occurrences received lower weights. This approach aimed to balance the 
influence of each lesion type during the training process, giving more emphasis to the underrepresented classes. 
By assigning appropriate class weights, we aimed to alleviate the adverse effects of class imbalance and improve 
the overall performance of our oral lesion classification model.

Dataset bias
The classification of oral lesions from intra-oral images presents unique challenges, notably due to the variability 
of lesion incidence based on anatomical sites within the oral cavity. Certain lesions are exclusive to specific 
sites, while others may never occur in those areas. For instance, Hairy Tongue is condition that only appears 
on the tongue’s surface and is implausible on other sites such as the buccal mucosa. We define such implausible 
combinations as True Zero combinations. The oral pathology expert in the team was consulted in creating the 
True Zero combination based on the expert evidence synthesis. On the other hand, oral squamous cell carcinoma 
(OSCC), a rare lesion, can theoretically occur at any anatomical site within the oral cavity. However, despite 
being plausible, there may be no training images available for this lesion type at certain locations. We refer to 
these plausible but absent combinations in the training data as Data Zero combinations. Figure 4b illustrates the 
True Zero and Data Zero combinations of lesions and anatomical sites pertinent to this study.

Additionally, the limited accessibility to certain anatomical sites (e.g., the palate) means that images of lesions 
in these areas can only be captured in specific ways. These factors contribute to a high correlation between 
anatomical sites and lesion types, leading to potential bias in CNN models. While datasets that are heterogeneous, 
exhaustive, and contain a sufficiently large number of images for each unique combination of anatomical site 
and oral lesion type may help mitigate this bias, real-world datasets often make it challenging for models to 
distinguish between Data Zero and True Zero combinations. Our group has previously developed a method to 
incorporate external knowledge of implausible combinations by augmenting the loss function of CNN models45. 
In contrast, this study explores an alternative approach, aiding the model in learning the correlation structure 
through guided attention to the lesion’s location and supervised learning of the lesion’s anatomical site.

Data leakage
A common challenge in intra-oral image classification tasks is data leakage, which occurs when the algorithm 
learns using information from the data that should not be utilized for the task at hand, such as the shape of 
teeth52. This issue is further exacerbated by the use of multiple angles of the same lesion, leading to an illusion 
of high performance. To avoid data leakage, we first created clusters of images representing the same oral lesion 
using the EXIF data, patient IDs, lesion types, and anatomical sites. These clusters were then randomly assigned 
to either training or test sets, resulting in a training set of 1,200 images and a test set of 688 images (Fig. 4a). 
This approach helps ensure that the model does not gain an unfair advantage by seeing the same lesion in both 
training and testing phases.

Data augmentation
To improve the diversity of our oral lesions dataset, we employed a range of data augmentation techniques. 
These included random rotations within a certain range, horizontal and vertical flips, random translations, and 
adjustments in brightness and contrast, all while maintaining the aspect ratio of the images. These transformations 
were meticulously designed to preserve the intrinsic characteristics of oral cavity images, ensuring that the shape 
and size of the lesions remained unaltered. This careful approach allowed us to create a more robust dataset, 
suitable for training our models.

Experimental and training setup
We conducted a comprehensive series of experiments to evaluate the effectiveness of our approach in three key 
areas: (i) accurately classifying oral lesions, (ii) improving interpretability through generated attention maps, and 
(iii) mitigating dataset bias.

Models
We employed a transfer learning approach with EfficientNet-B5 (EB5) model as the backbone architecture53. 
Initially, a baseline model was established by fine-tuning the EB5 model pre-trained on ImageNet-1K54, 
incorporating only the Classification stream. Building upon this, we introduced the guidance loss through the 
Guidance stream resulting in (GAIN) model. Subsequently, we added the anatomical site classification loss via 
the Anatomical site prediction stream, yielding the (GAIN+ASP) model. Except for the hyper-parameter tuning 
procedure detailed below, all other aspects of fine-tuning were kept consistent across the three model variants. 
By comparing the performance of our approach with the baseline model, we aim to demonstrate the additional 
benefits and improvements achieved by the integration of guidance stream, which trains the network’s attention 

Scientific Reports |        (2024) 14:31700 9| https://doi.org/10.1038/s41598-024-81724-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


to enhance interpretability and mitigate dataset bias. The inclusion of anatomical site prediction further enhances 
interpretability and reduces dataset bias.

Hyper-parameter optimization
Our method requires three additional hyper-parameters to be optimized for the combined loss function. We 
utilized Bayesian Optimization, implemented via BoTorch55 on the Adaptive Experimentation Platform56, to 
tune these parameters. Specifically, we kept the hyper-parameters for EfficientNet-B5 and AdamW Optimizer57 
at their recommended settings and focused the optimization process on our method’s hyper-parameters. Details 
of the optimization procedure and the optimal hyper-parameters identified are provided in Appendix. We 
fine-tuned all model variants on our dataset, adjusting weights of all the layers to optimize performance using 
appropriate loss functions and the optimal parameters identified.

Metrics
Our choice of evaluation metrics was guided by the recent ‘Metrics Reloaded’ framework from58. This framework 
recommends a problem driven approach that enhances the user-centric application of the model. Based on to 
this framework, we have a combination of metrics for image-level classification (classifying the image into one 
of 16 classes) and object localization (network’s attention on the lesion area). We chose the following metrics for 
image-level classification: (i) per-class balanced accuracy (BA), (ii) per-class brier score (BS), and (iii) ROC-One-
vs-Rest AUC (AUC). To assess the interpretability of the generated attention maps, we utilized recommended 
segmentation metrics: (i) Intersection over Union (IoU), and (ii) Dice-Sørensen coefficient (DSC). These metrics 
collectively ensure a comprehensive evaluation of our model’s performance and interpretability.

Mitigating dataset bias
To evaluate our method’s ability to mitigate dataset bias, we conducted two ablation studies focusing on True 
Zero and Data Zero combinations. First, we quantified the implausible lesion predictions made by each model. 
A prediction is considered implausible if the predicted lesion type, given the ground truth anatomical site, 
contradicts established anatomical norms (Fig. 4b).

Second, we introduced a category of Data Zero combination by removing a specific combination of anatomical 
site and oral lesion type from the training dataset (specifically, Mucocele lesions occurring on outer-lip). We 
then retrained all model variants from scratch on this modified dataset. The subsequent evaluation focused 
exclusively on the models’ performance on this particular lesion type. The rationale behind this approach is that 
if a model is influenced by dataset bias, its performance would deteriorate when encountering certain lesion 
types in anatomical locations it hasn’t been trained on. By conducting these studies, we aimed to assess the 
robustness of our models and their ability to generalize beyond the biases inherent in the training data.

Data availability
Due to the limited access to the oral cavity, images of specific anatomical locations (e.g. palate) could only be 
taken in a limited number of ways. Further, some images may contain identifiable patient information (e.g., 
parts of eyes, skin color, dentition), preventing us from providing dataset publicly. However, dataset can be made 
available for reproducing results or collaborative research upon request to the corresponding author.
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