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It was observed that variability in mortality rates over time in the state of Qatar is 

not of binomial nature. A method of analyzing these mortality rates in the 

heterogeneous population is presented in this paper. Three estimation approaches 

are also investigated. This variability was also examines for the total males and 

the total females. In each analysis it was observed that the variability is very much 

the same as what one would expect under a beta-binomial model. A significant 

finding, for the mortality data, was that estimates of the parameter e were 

remarkably homogeneous for each analysis. That is, the relative degree of extra 

binomiality was very much the same from month to month, regardless of the 

population size or the number of months in the analysis. 

1-Introduction: 

A recent effort in making detailed population projections for areas 

such as small states or municipalities suggests that there is an increasing 

interest in analyzing vital events in small populations. Unfortunately, 

analysis at the local level is fraught with much greater analytic problems 

than are analysis at the national, regional, or even large states level. One of 

-49-



the major difficulties is that the stochastic variability of rate estimates for 

small populations reflects additional source of instability not as dramatically 

manifest in larger population groups. Thus mortality rates exhibit 

geographical variation on a worldwide scale, and within individual nation or 

state, even when adjusted for geographical differences in age, race, and sex. 

In other words geographic areas as large as nations or as small as 

municipalities are known to have varying patterns of mortality within their 

boundaries. This is true for all natural causes of death combined as well as 
for specific cause of death. 

Similarly geographic areas are also known to have varying patterns of 

mortality from year to year or from month to month. This research will 

focus on the variation in the monthly mortality rates from 1984 to 1990 in 

the State of Qatar. The findings and the conclusions of this study will 

contribute significantly to the understanding of the differential mortality in 
the State of Qatar. 

The analysis of the mortality rates has been discussed extensively 

from many different viewpoints ([1], [2], [3], [4], [5], [6], [7], [8], [9]). A 

common assumption is that the data follow a binomial distribution. 

However, a few writers have mentioned that in their experience, data which 

appear to be binomial proportions sometimes exhibit heterogeneity which 

results in greater variation than would be expected under the binomial 

distribution ([10], [11], [12], [13], [14], [15], [16], [17], [18], [19]). 

The main topic of investigation in this research will be the variability 

encountered in mortality rates, over some period of time for a specified 

small population. One might consider the observed monthly mortality rates 

or crude death rates for the State of Qatar for 1984 - 1990. A statistician 

might expect such a set of data to behave in a binomial manner, apart from a 

possible time trend which might be caused by any of a number of factors. 

Since such mortality rates are typically small, he may expect the set of rates 
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to behave in a Poisson manner. The basic logic of the model is that at the 

individual level, events are governed by a binomial or Poisson process. 

Conditions for the validity of assuming the binomial distribution for a 

group of lives observed during some time or age interval are that (a) each 

person of the group has the identical probability of death within the interval 

considered; (b) these lives represent statistically independent observations 

with respect to mortality. If the above conditions are fulfilled, then the 

deaths occurring in this group during the observation period may be 

considered a binomial distribution. In practice these conditions are never 

exactly satisfied. Condition (a) is violated to an appreciable extent for many 

groups of lives. The reason for this violation is that the mortality is not 

identical for each person in the group (i.e. monthly population). If we 

consider the average monthly mortality rate, it may be binomial within 

month but it may differ from month to month. Condition (b) may be also 

violated, since there is a close relation between friends, relatives and 

persons living near each other. Therefore use of the binomial distribution in 

demographic and actuarial work might appear to be a very questionable 

procedure. The same problem exists for the use of Poisson distribution, if 

we assume that the Poisson rate parameter is fixed. 

In the actuarial work, the existence of these large variation in 

mortality probabilities has been known for many years [20]. This, at least 

indirectly, accounts for the fact that most actuaries do not usually view 

mortality estimation as a statistical problem. They regard variability in 

mortality data as being due to intrinsic roughness which is the target of the 

graduation techniques or smoothing devices. Thus most of actuarial research 

in this century, within the general area of mortality estimation, has been in 

the field of graduation. One cannot read the principal actuarial textbooks on 

mortality estimation without corning to the conclusion that within the 

mainstream of actuarial science, mortality estimation and estimation by 

using statistical distribution are almost unrelated. 
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Therefore. the objective of this research is to see if statistics can lead to a 

deeper understanding of these perplexing mortality variations. bv finding 

or developing an alternative probability model which fits the data well. 

This model must be a general model for the analysis of mortality rates in 

multiple small populations. It must be designed to represent the estimates of 

the rates of vital events as a function of demographic variables, population 

heterogeneity, arid selected, substantively relevant covariates. 

At the individual level it is possible to model the binomial or Poisson 

rate parameter as a pre-selected function of covariates. However, in 

recognition of the facts that (a) individuals are heterogeneous in their risk to 

the process; and (b) the people are systematically packaged into small 

population "units" (i.e. monthly population), the total model of variation in 

small population dynamics will require that we "mix" individual level 

models. That is, our model of variation of rates over small populations 

requires that we view these rates as a realization of a mixture of individual 

level binomial distribution. In order to evaluate our model, we find it 

convenient to assume that the rate is constant over all individuals within a 

given small population (i.e. we assume all the individuals in each month 

have the same mortality rate), since we can not observe risk characteristics 

of individuals. 

Consider x. the observed number of deaths in the population cell i 
I 

within some specified demographic group of size n .. The n. individuals are 
I I 

assumed to be demographically homogeneous so that individual differences 

in risk are not due to the mixing of demographic categories but instead are 

due to individual differences in genetic characteristics, environmental 

exposure, nutrition and lifestyle [21]. Because of dealing with population 

mortality data, individual differences in diseases susceptibility will not be 
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observed. Consequently, if the effects of such population heterogeneity are 

to be accounted for, then it is necessary to include parameters representing 

these effects in the probability density function employed to model the 

number of deaths in a cell. The choice of the model must be restricted to 

distributions (i.e.x. takes only integer values) with two parameters (the first 
I 

being related to the mean cell death rate, the second dealing with population 

heterogeneity). Given these restrictions, we find out that x. can be modeled 
I 

by the two parameter beta binomial distribution. The choice of beta 

binomial distribution is motivated by the fact that, it represents a 

compounding (i.e. weighted average) of binomial distributions with beta 

distributed levels of diseases susceptibility. The compounding increases the 

heterogeneity (variance in the model). 

We could think about the general model for the mortality observations 

as a mixture of two binomial population, B(n
1
, q 

1
) and B(n

2
, q

2
), in the 

unknown proportions of a. and (1 -a. ). This three-parameter model could be 

a candidate for the underlying heterogeneous probability model for the 

mortality data. The model will require the estimation of the parameters p, q 

and a.. Other more complicated alternatives, such as a mixture of three 

binomial or a mixture of two beta binomial distributions, may lead to a 

heterogeneous model. 

We could also think about compounding the variance and instead of 

searching for a reasonable distribution to assign to q., the parameter of the 
I 

binomial, we might leave the distribution unspecified, and merely assume 

that qi has some distribution with mean (J..l) and variance (V q). We can find 

the expected value of the unconditional variance and the expected value of 

the variance of qi and then we can estimate (V q). (see appendix A) 
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Therefore 

where 11 (1- 1!2 
) /ni .is a consistent estimate for 

K K K K 
and where q. = x. I n. and 11 = L x.J :L 1\ = L {\/q I L 1\ 

I I I i=1 i=1 i=1 i=1 

These results will be investigated further when illustrative data are 

considered. We can use the actual data to estimate the unconditional 

variance of q. then we can estimate the variance of q and compare it with 
I 

the variance of the model. We can also fit the model parameters to the 

estimated variance, Var(q.). 
I 

2- The model 

The binomial distribution could be used conditionally to model the 

number of deaths in a given month or a given period of time. This model is 

generalizable to a heterogeneous population model, if the q.s, the binomial 
I 

parameters (hazard rates), have been 6btained randomly from a beta 

distribution of the following from 

r(a.+f3) qa.-1 (1 - q~l3-1 0 < q < 1 , a, b > 0 
r( a.) r(f3) J • 

p(q; = q) = (1) 

0 e~ewhere 

This distribution for the q. is a reasonable one for the following 
I 

reasons (1) The range is precisely that over which q. must vary. (2) The 
I 

distribution has a wide variety of shapes for differing values of the two 

-54-



parameters, so that there is considerable flexibility in its form. (3) The 

mathematical convenience. The mean of this distribution is J.1 = a/(a + B) 

and its variance is o
2 

= aB/(a + B)
2 

(a+ B + 1) or o2 = 8 J.1 (1 - J.l) 

where e = t/(a + B + 1). 

Given q, the conditional distribution of the number (x.) of deaths 
I 

among n. persons is assumed to be binomial 
I 

n 
( ) qx (1 _ qy-x 

X 

P (x; = xlq) = 

0 

x = 0, 1, 2, .... , n 

(2) 
elsewhere 

It follows that the marginal distribution of the number of deaths 

among n. persons is as follows 
I 

1 ni r(a+J3) 

P(xi=x) = f ( ) q a+x-1 (1-q) n+~ -1 dq 
o X r(a) r (J3) 

therefore 

n· 
( ') r(a.+[3)r([3+n;-x)r(a.+f3) 

x r(a.+f3+1) r(a.) r(p) 

0 

X= 0, 1,2, .. 

a, 0 >0 

elsewhere 

(3) 

We now proceed to find the mean and the variance of the beta 

binomial distribution, via factorial moments ([22], [23], [24]) 

Let /r) be defined by 
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x<r> = x(x- 1)(x- 2)(x- 3) ..... (x- r + 1) 

x(r) r(a + x) rep+ n r x) rca+ p) 
oo n; 

E ( x(r) ) = L ( ) -----------------------------------------­
X=f X 

r(a+ p + n ) r(a) r (f3) 

n(r) r(a + r) rca, p) 

----------------------------
r(a)r(a + p + r) ( a + p + r - 1 )<r) 

Thus E(x) = n;al(a + p) = ll;J.l, therefore 

E(x/n) = a!( a+ 13) = ll 

n; (n;- 1)a(a- 1) n.a 
I 

and V AR(x;) = ---------------------- + ------ -
(a+f3)(a+f3+1) (a+f3) 2 (a+P) 2 

Therefore 

V AR(x/n) = J.l(l - !l) In; + J.l(l - J.l)®(l - lin;) 

(4) 

(5) 

(6) 

Notice how the variance is partitioned into two components, the first 

component represents the usual binomial variability, Var(q), while the 

second component represents the additional variation. If a and 13 become 
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infinity so that a/( a+ [3) = J...l is a constant, q, then var (x./n.) = q (1 - q)/n., is 
I I I 

a simple binomial variability. Therefore, one can think of e as a measure of 

the amount of variability in excess variation or a measure of extra-binomial 

variation. If E> is very small or goes to zero, this excess variation (i.e. the 

second term of equation (6) can be ignored and binomial model can be used. 

On the other hand, if E> is larger than zero the binomial variation should be 

disregarded, since it will provide a very small portion of the total variability, 

and other statistical models and procedures adopted. 

The beta-binomial distribution which can be approximated to a 

negative binomial distribution, but the parameters involved in this 

distribution are not readily identified with the usual way of writing the 

negative binomial distribution. This different parameterization is natural in 

order to apply the model to the mortality data. It follows that the marginal 

distribution of the number of deaths when n, and (3 are large is 

approximately negative binomial distribution. 

{n;/(n;+I3)Y{[3/(n;+l3)}a{n[(a+j -1)/ J]}, where x=0,1, ... 

A_x; =x) = (7) 

0 elsewhere 

This approximated model of beta binomial can be written as (see 

appedix B): 

X= 0,1, .. 

p(X; =X)= (8) 

0 elsewhere 
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13 
where P = { -------} 

n+p 

To find the mean and variance of the approximated form of beta 

binomial (negative binomial) we first find the general factorial moment. 

Therefore 

Therefore 

x<r) (a+ X - 1 )! 
00 

!: 
x=r 

(x-r)!(a-1)! 

= (n; I p)r (a+ r- l)<rl 

and E(x/n) alP 

Var(x) = ( n/P? a( a+ 1) + nia/P - ( nia/P? 

V ar( x/n) = a/nip + a/P2 

(9) 

The partitioning of the variance consists of two components. The first 

term represents binomial variability and the second term represents the 

additional variation. 

3-Estimation procedures: 

The maximum likelihood estimators of a and 13 cannot be derived in 

closed form in this case. Two simpler methods suggest themselves. The first 
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method is the method of moments and the second method is the method of 

the mean and zero to fit the beta-binomial. However these methods are 

inefficient (i. e. variances of estimators are too large). Therefore, an 

algorithm will be developed to obtain the maximum likelihood estimates 

numerically. Two other alternative estimation approaches are investigated. 

The first is the minimum chi-square method, and the second is the method 

of quasi-likelihood method introduced by Neider and Wedderburn ([25], 

[26] ) and used by ([27], [28] [11 ]). 

3.1 - The method of maximum likelihood estimation (MLE): 

From a theoretical point of view the most important general method of 

estimation so far known is the method of maximum likelihood. As a general 

method of estimation, it was first introduced by Fisher [29] and it has 

afterwards been further developed in a series of works by the same author. 

Important contributions have also been made by others. Allowing for 

differing numbers of persons at risk of dying, in each of k month by 

subscripting n, the likelihood function is 

K X 
L = D{n/ (ni+ f3)Y {f3/(ni+ f3) }" { n [(a+ j- 1)/ j]} (11) 

I =l j =l 

It is found out that the maximum likelihood estimator can not be 

derived analytically (see appendix B). Therefore the likelihood equations 

must be solved numerically by iterations. A large number of authors 

suggested the method of moment estimates as a convenient starting point for 

the iteration. Some authers [30], [31] draw attention to the inefficiency of 

the moment estimation in certain cases of the negative binomial law. 

The standard errors of the MLE's of the parameters are the square roots 

of the diagonal elements of the inverse of the information matrix. The 

information matrix elements are asymptotically equivalent to the negative 
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expectation of the second partial derivatives of the likelihood function (see 

appendix C). 

Using the state of Qatar mortality data the maximum likelihood 

estimators for a and ~will be found and the information matrix, <1>, will be 

estimated. The purpose of developing this information matrix is to get 

estimates of the relevant variances. These variances will prove to be very 

useful when the data are considered. As an example we may use the "delta 

method" ([32], [12]) to find Var(Jl) and Var (9). 

RcallJ.I.=a/(a.+P) and®=ll(a.+P+l) 

then Var(J.I.) = H<l>-1 H 

(
81! 8j.l) where H = aa 813 , G' _ (ae ae) 

- 8a 813 and <1> -tis the inverse of the info-

rmation matrix (i.e the variance-covariance matrix of a and J3). The results are 

Var(1.1.) = Var(a.){J3/(a. + J3)2
} 

2 

- 2 Cov(a.,p){a.!(a. + J3)2
} { p!(a. + Pf } 

+ Var(PH a!( a+ Pf }2 (12) 

and Var(®) = { 1 1 (a+ p + 1)4
} { Var(a.)- 2 Cov(a., p) + Var(p) }(13) 

For large values of a and ~. this matrix could be what is sometimes 

called "ill-behaved" (or unstable or almost singular) in that its determinant is 

very small relative to the elements of the matrix. In terms of MLE's the 

amounts of a and ~. being highly correlated. 
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3.2 -The method of Minimum chi-square estimation (MCS): 

Again consider that the mortality observation x. is beta-binomial 
I 0 

where i = 1, 2, ... ,k. Since x. the mortality observation and n. the population 
I I 

sizes are very large, we could consider that the assumption of normal 

distribution is valid for large samples. In other words consider that x. is 
I 

approximately normal distribution with mean n.v and variance n.v (1 - Jl) I 
I I 

w. = 1 + e (n. - 1) -I. As a result, if we take the vector of observation X 
I I 

0 

X-N 

0 

Therefore 

(x;- n,. 1-lf w. K I 

~ = L -----------------
i=1 {14) 

is approximately chi-square with k-2 degrees of freedom, since a and ~ 

need to be estimated from the data. The procedure for finding MCS 

estimates is quite analogous to th'at for finding MLE. Moreover, the 

(asymptotic) properties of MCS estimates are similar to these ofMLE's. It 

seems natural to attempt to determined the best values of the parameters Jl 

and e so as to render X2 as small as possible. We then have to solve the 

equations 
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a)(2 K 
-=L: 8

1-1 i=1 

J..t(1- J..l) 

wi (xr ni J..l)2 ( 1 - 2J..t) 
K 

- " ~ --------------------------i=1 

())(2 

ae 

wi
2 

(xi- ni J..tf ( ni - 1) 
K 

L: -------------------------------
i=1 

0 (15) 

0 (16) 

with respect to the unknown parameters ~ and 8 and insert the values 

that we found into X2.The limiting distribution for this method of estimation 

has been investigated by Pearson and Neyman [33], who used methods at 

multi-dimensional geometry of the type introduced by R. Fisher [29], [34]. 

It can be shown that for the large ni the influence of the second term in 

equation [ 15] becomes negligible. Thus we have to solve the following two 

equations 

())(2 

ae 

K 
L: 
i=1 

w. (x.- n. "f t t tr 

wi2 (xi- ni J..l)2 ( ni - 1) 
K 

L: -----------------------------
;=1 

0 (17) 

0 (18) 

and usually this will be much easier to deal with. The method of estimating 

the parameters J.l and 9 from the system of equations ( 17) and ( 18) is called 

the modified minimum chi-square method. Under general conditions, both 

methods (MCS or MMCS) give the same limiting distribution for the 
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parameters estimates when n. is large. In our analysis we found 8 must be 
I 

equal to 1 for X
2 

to be minimum and therefore the method of MCS is not a 

satisfactory method of estimation. Therefore the method of MCS will not be 
discussed further at this point. 

3.3- The method of quassi-likelihood estimation (MLE): 

To define a likelihood function we have to specify the form of 

distribution of the observation, but defining a quasi-likelihood function need 

only specify a relation between the mean and variance of the observations. 

Wedderburn [26] defined the quasi-likelihood function, which can be used 

for estimation in the same way as a likelihood function. With constant 

variance this leads to least squares estimation. When other mean-variance 

relationships are specified, the quasi-likelihood sometimes turns out to be a 

recognizable likelihood function. For instance, for a constant coefficient of 

variation the quasi-likelihood function is the same as the likelihood function 

obtained by treating the observations of q., the mortaity rates as if they had a 
I 

beta distribution. 

Suppose we know the relationship between the mean E(x.) and the 
I 

variance for the mortality observation x. but we do not know the specific 
I 

distribution for x .. Usually E(x.) has a complicated structure in terms of 

other explanatory 
1

variables i.e.J.l\as the form (1 + e-Bfl where B is a linear 

model. Let us assume that q.s are independantly distributed on (0,1) with 
I . 

E(q.) = Jl, var (q.) = 8Jl (1 - Jl) and assume that E(x.) = n.Jl and Var (x.) = 
I I I I I 

n.Jl ( 1 - J.L) {1 - 8 (n. - 1)}. Estimation of B is achieved by iterative use of 
I I 

weighted least squares equation, 

Z:WVZB=Z'WVY (19) 

-B 
In our study Jl = 11(1 + e ) orB is scalar=- Log { (1 - Jl) I Jl } and a 

single equation results. The details are: 

- 63-



1 

w. = -----------------
1 

where 

W1 
1 0 
1 

Z= W= 
0 

1 0 KX1 

nw{1- J..L) 
0 

V= 
' 
WV= 

0 
n k J..L(1 - J..L) KXK 

Y= 

Therefore 
K 

z; W V Z = ( L w. n. ) f.l(l - f.l) 
i=1 l l 
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ae = ---------------

0 ......... 0 
W2 0 ... 0 

0 
Wk 

KXK 

w 1n 1J.l(1 - J..L) 
0 

0 
w kn k J..L(1 - J..L) KXK 



and since Z: ~ V Z B = Z' W V Y , then 

( L wi ni ) Jl(l - Jl)B 
i=1 

K 
L wi ni ll (1- Jl) { B + (x. - n. Jl) In. Jl(l- Jl)} i=1 I 1 1 

Thus 

K 
Jl(l- Jl) B + L: wi(~- nk Jl) 

i=1 

K 
L wi (x.,.- nk Jl) = 0 

i=1 
An ancillary equation based on the X2 statistic is used to estimate e as 

· K K ' 
0 - [~- .L

1 
{wi (1-wi vi qi)}] I [ L {W

1
·( n. - I) (1- w.v.q.)}] = 0 

/= i=1 I I I I 

(20) 

(21) 

It is readily apparent that one cannot obtain explicit expressions for 

the quasi-likelihood estimators of ll and E>. Therefore, the estimation will be 

accomplished by numerical iterations. The estimation requires that initial 

estimates of the parameter values be provided. In our analysis we set 

ll =10-3 and E> = 10-4 with these "starting values," the iteration algorithm 

replaces at each iteration the current values of the parameters ll and E> with 

better estimates until they converge. 

4 - Application of the model to the State of Qatar mortality 
data: 

A model for the analysis of rate differentials of vital events for a small 

populations over time has been presented earlier with the intent of providing 

demographers with a flexible framework for evaluating the effects of 

heterogeneity on aggregation bias. In our model heterogeneity is captured as 

extra-binomial variation. The methodology presented earlier was applied to 

the analysis of monthly mortality data for the State of Qatar for the years 

1984 - 1990. Table (D.l) in appendix D, n. represents the population size 
I 
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for each month, x. represents the number of mortalities for each month, and 
I 

q. = {(x. I n .) (3651D ) }, where D represents the number of days in the 
I I I m m 

month. Now the results of assuming that qi the binomial parameter, has an 

unspecified distributional form with variance V qi will be examined using 

the State of Qatar mortality data. As it pointed earlier, the unconditional 
variance, Var(q.), will be estimated as 

I 

To begin the analysis it is necessary to estimate what has been called 

V q the difference between the unconditional variance and the binomial 

contribution to that conditional variance. The estimates are presented in 

Table (D. 2) in appendix D, subscripted because of the differing n.' s. Note 
I 

that, there is additional variability in the eighty four points. This additional 

variability, represented by V q for all points accounts for more than 93% of 
the total variability. 

We tum to the beta binomial distribution as a candidate for the 

underlying probability for the data in Table (D.l). Recall that, for this 

distribution, E (x/ni) = a/( a + ~) and the Var (xi I ni) = Jl (1 - Jl)lni + Jl (1-

Jl) e (1 - 1/ni). As mentioned the first component in the variance represent 

the usual binomial variation, Var (q .), and the second component represents 
I 

the additional variation. The problem now is to estimate the parameters a 

and ~- We will first consider the maximum likelihood estimators for a and 

~.as derived earlier. The natural logarithm of the likelihood function for the 
beta binomial model is 

K 
Log L = L { a log p - Log xi! +xi Log ni! 

1=1 

X; . 
- (a +x)Log(p + ni) + [ "J1 Log( a+ J- 1)]}. 
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When first partial derivatives were taken it was noted that analytical 

solutions for the maximum likelihood estimators a and 13 were not possible. 

As a result iterative procedures were developed to obtain the estimates. The 

estimation procedure requires that initial estimates of the parameters values 
1\ 

be provided. In our analysis we set a = 10-04 and l3 = 10 -o4 as initial values 

for the parameters. Based on these iterative procedures, we obtain 
A A A A 

estimates: a = .12971, 13 = 700.7865, Jl = 2.251539E-03, and e = 
A A \ A 

1.73335E-02. Also we may estimate S.E.(a), S.E.(I3), S.E.(J!J and S.E.(8) 

using the actual data, and the form of the information matrix. The inverse of 

the estimated information matrix is 

2.019126861E -01 -1.090846500E-01 

<1>-1 = 

-1.090846500E+01 4.574625816EE+04 

Then S.E.(a) = 1.420959816E-02, S.E.(6) = 6.763598021E + 01, 
1\ 

S.E.(J.1)
11 

= 1.207804925E-03 S.E.(8) = 1.376752728E-04 Since we 

considered e as a measure of the amount of extra-binomial variation. Let us 

test for binomiality by assuming 

1\ 1\ 

Assuming 8 is approximately normal with mean 8 and variance V, 
II 1\ 

then the 95% confidence interval for 8 + 1.64 {S.E.(8)} or (0.0171077, 

0.0175593). Since 8 = 0 does not fall in the C.I., H
0 

will be rejected and HA 

(i.e. there exist extra variation) will be accepted. Therefore the beta 

binomial distribution is favored to fit the mortality data instead of the 

binomial distribution. The problem is now how to test whether the model 

fits the data adequately. The test outlined earlier is the classic textbook 

asymptotic (large sample) statistical test for goodness of fit. In other words 

we proceed to compare the agreement between expectation under the 
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probability model and the actual observation. The resulting X 
2 

- test gives 

/ = 2.34472, which is very small in comparison with X 
2 

from the table 

with 81 degrees of freedom. As the maximum likelihood fit is entirely 

satisfactory, there exists good reason to use the beta binomial law (negative 

binomial approximation) as a mathematical model of the mortality 

differential 

The estimators of the beta-binomial parameters were validated with 

the Qatar monthly mortality data for 1984 - 1990. The parameters of beta 

binomial were estimated using a randomly selected half of the data and were 

tested for goodness of fit using the other half. The results are &. = .129956, 
II II II 

~ = 699.98764, Jl = 2.25878E-03 and E> = 1.42629E-03. Testing for 

goodness of fit using the other half of the data we obtain x 
2 

= 1.25023, 

which is very small comparing with X 2 
with 39 degrees of freedom. 

II II II II 

Therefore the prameters Jl and E> that depend on a. and ~ are very 

satisfactory. As mentioned earlier, the first component of the Var (x. I n.) 
I I 

represents the usual binomial variation, Var(q.), and the second component 
I 

represents the additional variation or the extra-binomial variation. Table 
(D.3) shows the values of binomial variation and the extra variation for each 

month in the State of Qatar mortality data. It is clear from this table that the 

additional variation accounts for more than 99%, for almost all cases, of the 

total variability. 

We have seen that, for the State of Qatar data, the binomial portion of 

the total variability in monthly mortality rates over time, (1984 - 1990), was 

very small, and that a much better fit was obtained under a beta binomial (or 

negative binomial) model, in which the additional variation is characterized 

by the parameter E>. In order to gain a better understanding of the 

phenomenon of extra-binomial variation, an empirical investigation was 

undertaken to estimate the beta binomial parameters for the mortality data 

over time for total male and total female as well. 
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II II 

In Table (1), a, ~ represent the maximum likelihood estimates of the 

beta binomial parameters, for each group. Similarly ~ represents the 

estimated beta binomial parameter and ~ the measure of the extra-binomial 
II 

variation for each group. Table (2) shows S.E (a), S.E (~), S.E CCl) and S.E 

(~). Then, the goodness of fit for the beta binomial and for the binomial 

model were run in each of the data sets. The results are compared in Table 

(3). It is quite clear that the binomial model is unsatisfactory. By contrast, 

none of the X 
2 

values for fitted beta binomial is significant. It is obvious 

that beta-binomial fits the data quite well. 

Table (1) 

Maximum Likelihood For Beta Binomial Parameters (a, ~) The Expected 

Mean (J!) and The Measure of the Extra Binomial Variation (8) 
' 

For Qatar Mortality Data (1984 - 1990) 

Group a ~ Jl e 

Total Males 1.2937 E- 01 700.8911 2.24534 E-03 1.73309E- 02 

Total Females 1.2987 E- 01 700.8784 2.24534 E- 02 1.73309E-02 

Total Population 1.2971 E- 01 700.7864 2.25154 E- 03 1.73335E- 02 
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Table (2) 

The Standard Error For The Parameters a, f3, J..L,8 

For Qatar Mortality Data (1984- 1990) 

Group SE (a) SE (f3) SE (Jl) SE (8) 

Total Males 1.47566 E- 01 2.18208 E + 02 2.299485 E- 04 4.44089 E- 04 

Total Females 1.47878 E- 01 2.14179 E + 02 2.245058 E- 04 4.35878 E- 04 

Total Population 1.42096 E- 01 6.76359 E + 02 2.207805 E- 04 4.37675 E- 04 

Table (3) 

Comparaison of Chi - Square Values For 

Beta-Binomial and Binomial Distributions 

2 
X 

2 
for Binomial Group X for Beta-

Binomoial 

Total Males 2.8511 E + 00 1.25375 E + 03 

Total Females 5.5327 E + 00 2.51535 E + 03 

Total Population 2.3447 E + 00 1.53509 E + 03 

Tabulated X 2 • • 1.03152 E + 00 1.04426 E + 03 

(** Note that degress of freedom for X 
2
when testing beta- binomial pa­

rameters = 84-1-2= 81 , since the estimated parameters are two, where the of 

for X 
2 

when testing beta- binomial parameters = 84-1-1 = 82, since the es­

timated parameters are one). 
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We will next consider the method of quasi likelihood estimates, 

defined and introduced by [26]. In this method we do not have to specify the 

form of distribution of the observations, but need only specify the relation 

between the mean and variance of the observations and we could define 

quasi likelihood and use it for estimation. To examine the extra-binomial 

variation let us assume as [27] does, that the qis are independently 

distributed on (0, 1) with E(q.) = ~ Var(q.) = 8J.1 (1- J.l) and assume that, x. 
1 1 1 

conditionally binomial B. (n., q.) so that unconditionally E(x.) = n. J.1 and 
1 1 1 1 1 

Var(x.) = n. J.1 (1 - J.l) {1 + 8 (n. - 1) }. This model is fitted by the 
1 1 1 

Gauss-Newton method and applied to the State of Qatar mortality data 1984 
A 

- 1990. It was found that, using this iterative procedure that · J.1 = 
A 

2.117588E-03 and 8 = 2.7878E-03 for Qatar data. Williams's method 

estimates the unknown parameters in the linear predictor for a given value 

of 8 . The method uses a common estimate of e obtained through making 

the generalized chi-square statistic for the "maximal" model equal to its 

degrees of freedom 

Testing for goodness of fit using the State of Qatar mortality data, x
2 

= 

82.9967 which is very close to k - 1 = 83 the degrees of freedom, and this 

implies that the estimates J.1 and 8 are very satisfactory. Note that 8 the 

measure of extra-binomial variation, is smaller than 8 under MLE method 

of estimation. Solving the equations (20, 21) using Qatar data for eighty 

eight month, we again estimate the parameters 1-1 and e for total males and 

total females. 

Results are presented in column 2 and 3 of Table (4). Column 4 in the 
2 

table presents the value of ( x ) for the test for goodness of fit, where 

column 5 represents the difference between 83, number of degrees of 

freedom, and ( x
2 

). Since the values of ( x
2 

)is very close to the number of 

the degrees of freedom, we can conclude that the estimation of the 

parameters is very acceptable. 
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Table (4) 

The Quasi- likelihood Parameters f..1 , 8 and The Test For 

Goodness of Fit X 
2 

For Qatar Mortality Data (1984- 1990) 

Year f..1 8 x2 83 -X 

Total Males 2.010863E-03 2. 77568 E-03 83.0017 -0.0017 

Total Females 2.175893E-03 2.82782 E-03 829986 + 0.0014 

Total Population 2.117588E-03 2. 78785 E-03 82.9967 + 0.0033 

5 - Summary and conclusions: 

2 

It was observed that variability in mortality rates over times for large 

populations is not of binomial nature. The approach has been to assume that 

this excessive variability is caused by heterogeneity arising from the 

parameters q. of the product of the probability density Functions of beta and 
I 

binomial. This distribution has many names, possibly the most descriptive 

name is the beta-binomial distribution. 

Furthermore, the variance can be separated into a binomial component 

and an extra-binomial component. The aim of this paper has been then to 

characterize this extra-binomiality by means of the estimation of the 

parameter 8 (i.e. the measure of the extra-binomial variability), that 

depends on a and [3 the parameters of the beta-binomial distribution. The 

procedure for estimating this parameter was that of maximum likelihood 

estimation. An iterative method was used to find the maximum likelihood 

estimates using mortality data. Previous discussions in the literature of 
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estimation procedures for the parameters of the beta-binomial distribution 

have not dealt with unequal n. or such large samples, as was done here. 
I 

Due to the typically small mortality rate and the large population size 

which were considered, the beta-binomial model was approximated by a 

form of the negative binomial distribution. For this form of approximation 

of beta-binomial, contrary to the binomial for which the mean exceeds the 

variance, the variance is greater than the mean. 

Variability in monthly mortality rates for the total males and total 

females for the same period of time (1984 - 1992) were examined with the 

model too. The most interesting finding in this study lies in characterizing 

the excess variability, or the extra-binomiality, via the compound 

distribution. Another notable finding, for the total population mortality data, 

the total males and the total females mortality data, was that estimates of the 

parameter t3 were remarkably homogeneous for each analysis. That is, the 

relative degree of extra binomiality was very much the same from month to 

month regardless of the population size or the number of months these 

analyses deal with. The finding supports our initial assumption that the 

unobservable binomial parameters are random variables that follow beta 

distribution. 

The motivation for choosing beta distribution was, as discussed 

earlier, in section 2, that beta distribution has a variety of shapes. These 

shapes are very similar for each analysis. It is significant that our 

investigation supports this finding though it has adopted a different 

modeling approach, hence a different analysis by estimating the parameters 

of the beta binomial distribution using the actual mortality data and 

calculating the monthly mortality rates as E (x./n.). By arriving at the same 
I I 

results arrived at by the most established methods in the previous studies 

(i.e. the adjusted mortality rates or the standardized mortality rates) we add 

credibility to our approach. Thus our study adds a new model for and 

method of estimating yearly mortality rates. 
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Appendix (A) 

Computational expressions for compounding the variance: 

Let x. be a binomial random variable, i.e. B. (n., q.) and let q. = x./n., i 
1 I 11 1 11 

=1, 2, 3, ... , k, where k is the number of the independent random variables 

q .. Thus the mean and the variance of q ., given q .s are E (q ./q) = q and var 
1 1 1 1 

(q./q.) = q. (1- q.)ln .. For the unobservable q. we specify no distribution but 
1 I 1 1 1 1 

only label the moments as E (q.) = ~ and VAR (q.) = V q· Suppose we 

consider the unconditional varian~e, Var (q.), is cr2J.11n~ where cr2~ =I: n. (q. 
2 1 1 1 I 

- ~) I (k-1) is an unbiased estimator. We can find the expected value of the 

unconditional variance and the expected value of the variance of q. are: 1 

var(q;) = E{E[q;- EE(q/q;)]2
} 

= E{E[ q;- E( q;)]2
} 

= E{E[ (q;- q;) + (q;-E(q;) ]2
} 

= E{E[ q;- q;]2
} + 2 E{E( q;- q;) (q;-E(q;)} + E{ q;- E(q;)}

2 

= E{ q;( 1-qyn;.} 

+ 0 
+V q 

(given) 

(since E { q;- E(q;)} = 0) 
( by definition ) 

Therefore 

and since 

Thus 

V q = var( q;) - E{ q;( 1-qYn;.} 

E{ q;(1-qyn;.} = (1/n;){E(q;)- E(q2
)} 

=(lin;) { f.l - ( f.12
- Vq)} 

V q = var( q;) - { [ f.l - ( f.12 
- V q.;) ] I n; } 

Vq = var(q;)- f.l (1- f.l2 ) In; - V q.i In; 
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If n. is very large, then 
I 

2 
Now estimating Vq, and since {1/(k- 1)} {Ln. (q.- J..l) /n.} is an unbiased 

I I I 
estimate for var (q.). 

I 

Therefore 

where J..1 (1 - J..1
2
)/n. is a consistent estimate for 

I 
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Appendix (B) 

Computational expressions for approximation of Beta-Binomial 

It is important to note the conditions under which the beta-binomial 

distribution leads to the negative binomial distribution. This relationship can 

be expressed, examined and verified as follows. Beginning with the beta 

binomial distribution (3), consider that n is large, J1 is very small, and we 

want the variance of xi to be moderate. This implies that J1 = a 1 (a + f3) 

goes to zero, and (n. I (a+ f3 + 1) and n./f3 are moderate. Then the limit of 
I I 

this distribution is 

n i r(a + x) f(p + n r x) f(a + J3 ) 
lim P(x i =x)= lim ( ) -------------------------------------

n;~oo n; ~oo x f(a + J3 + n) 

r(a + x) 
lim 

r( N +a) 
and since lim ----------- = Nb-a =I by definition 

n; ~ oor( N +b) 

r( N +a) 
then lim 

n; ~ oo r( N +b) 
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r(a) r (J3) 

f( J3 ) f(a + J3 + n) 



Therefore the limit becomes 

r(a+x) 
X A a ( A ) (a+X) = ---------- n , P n, + P 

x! r(a) 

X 

= {n/ (ni+ J3)Y {J3/(ni+ J3) }a { II [(a+ j- 1)/ j]} 
j=l 

This approximation results in a negative binomial distribtion defined by 
equation (7). 

Appendix (C) 

Computational expressions for maximum likelihood and the 
information matrix 

(C.1) 

Therefore 
K 

Log L = }.; { a log J3 - Log xi! + xi Log n) 
i=l 

K 

- (a +x)Log(J3 + n) + [}.; Log( a+ j- 1)]}. (C.2) 

k 
.r { log 
1=1 

f3 - log 

j=l 

k 
(f3+ni) + [ r 1/(a+j 

.i=1 

iJLogL ~ 
---aj3 = "-' { a I J3 - (a +x)/(p + n1)}= 0. 

i=1 
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(C.3) 

(C.4) 



2 K X; 
a :;.f = 1: [ .1: 1/(a + j - 1)z] ' 

i=1 ]=1 

K 
- Ka /f32 + 1: (a +x)/(13 + n.)2 

j=1 

o2LogL K 
iQ3 = K I p - 1: 1/(p + nJ 

i=1 

The information matrix is defind by 

[ 

-E(a
2

~~ ) _ E(02~~L ) J 
<I> ~ -E("'~ ) - E("';; ) 

(C.5) 

(C.6) 

(C.7) 

(C.8) 

and therefore the variances and covariances matrix are given by the inverse 

of the information matrix <1>- 1• 
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APPENDIX CD) 

Table (D.l) 

Population Size, Number of Deaths and Death Rates 
for The State of Qatar 

(1984- 1990) 

* ** 4 *** Year Momh n· X· Qi X 10 l l 

1984 JAN 351191 65 2.17922 
FEB 351797 47 1.74157 
MAR 352383 55 1.83772 
APR 353017 55 1.89556 
MAY 353730 48 1.59772 
JUN 354359 51 1.75105 
JUL 354996 57 1.89053 
AUG 355656 57 1.88702 
SEP 356338 47 1.60475 
OCT 357060 50 1.64877 
NOV 357753 51 1.73444 
DEC 358496 59 1.93776 

1985 JAN 359167 84 2.75368 
FEB 359804 67 2.42741 
MAR 360479 67 2.18840 
APR 361158 51 1.71808 
MAY 361924 63 2.04953 
JUN 362599 71 2.38234 
JUL 363311 63 2.04171 
AUG 364050 57 1.84351 
SEP 364775 54 1.80111 
OCT 365501 60 1.93283 
NOV 366189 76 2.52505 
DEC 366927 81 2.59918 

1986 JAN 367683 74 2.36968 
FEB 368297 55 1.94670 
MAR 369079 56 1.78640 
APR 369745 74 2.43501 
MAY 370494 68 2.16102 
JUN 371246 71 2.32685 
JUL 372059 63 1.99370 
AUG 372856 63 1.98944 
SEP 373634 60 1.95378 
OCT 374468 58 1.82366 
NOV 375300 73 2.36655 
DEC 376085 69 2.16020 



Table (D.l) (Continue) 

Year Month n· * X·** 4 *** 
1 1 Qj X 10 

1987 JAN 376799 68 2.06236 
FEB 377399 59 2.03792 
MAR 378218 62 1.93010 
APR 378967 74 2.37576 
MAY 379676 61 1.89168 
JUN 379741 63 2.01848 
JUL 380483 76 2.35185 
AUG 381240 54 1.66773 
SEP 382091 59 1.87870 
OCT 382907 64 1.96797 
NOV 383741 74 2.34620 
DEC 384586 76 2.32676 

1988 JAN 385356 91 2.78042 
FEB 386088 63 2.12711 
MAR 386902 61 1.85635 
APR 387687 63 1.97711 
MAY 388470 77 2.33380 
JUN 389345 72 2.24993 
JUL 390278 59 1.77996 
AUG 390996 79 2.37895 
SEP 391819 65 2.01836 
OCT 392805 59 1.76850 
NOV 393693 75 2.31780 
DEC 394569 94 2.80502 

1989 JAN 395329 93 2.76984 
FEB 396059 61 2.00773 
MAR 396900 71 2.10624 
APR 397707 65 1.98848 
MAY 398579 67 1.97921 
JUN 399391 82 2.49797 
JUL 400164 66 1.94195 
AUG 401025 59 1.73225 
SEP 401904 66 1.99799 
OCT 402883 67 1.95806 
NOV 403788 67 2.01880 
DEC 404630 83 2.41519 
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* 

Table (D.l) (Continue) 

Year Month n· * X·** Qi X 104 *** I I 

1990 JAN 405449 88 2.55551 

FEB 406190 79 2.53532 
MAR 407163 70 2.02423 

APR 408026 63 1.87856 
MAY 408923 63 1.81397 

JUN 409721 65 1.93018 
JUL 410605 63 1.80654 
AUG 411443 76 2.17488 
SEP 412342 68 2.00643 

OCT 413214 70 1.99459 
NOV 414069 77 2.26251 
DEC 414881 89 2.52579 

The population estimation depends only on the 1986 cencus and the natural growth since the 
monthly or the annual net migration is not available . 

** Source: Central Statistical Organization, Vital Statistics, Annual Bulleten (Births and Deaths) 1984-
1990. 

*** qi is the annualized monthly mortality rates . 

Xt 360 c-) C-) 
nt Dm 

where Dm represents the number of days in each month . 
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Year 

1984 

1985 

1986 

Table (D.2) 

or e a eo a ar or a HY a a 
Binominal and Extra - Binominal Variatibility 

f th St t f Q t M t rt D t 

* '** *** Month Var (qj) B.V Vq,j Per 

JAN 9.27470 E- 08 6.19170 E- 09 8.68014 E- 08 9.33241 E- 01 
FEB 9.25873 E- 08 4.94188 E- 09 8.66519 E- 08 9.46625 E- 01 
MAR 9.24333 E- 08 5.20554 E- 09 8.65078 E- 08 9.43683 E- 01 
APR 9.22673 E- 08 5.35942 E- 09 8.63524 E- 08 9.41914 E- 01 

MAY 9.20813 E- 08 4.50956 E- 09 8.61783 E- 08 9.51026 E- 01 
JUN 9.19179 E- 08 4.93280 E- 09 8.60254 E- 08 9.46335 E- 01 

JUL 9.17529 E- 08 5.31543 E- 09 8.58710 E- 08 9.42068 E- 01 
AUG 9.15827 E- 08 5.29573 E- 09 8.57117 E- 08 9.42175 E- 01 

SEP 9.14074 E- 08 4.49622 E- 09 8.55476 E- 08 9.50811 E- 01 
OCT 9.12226 E- 08 4.61001 E- 09 8.53746 E- 08 9.49464 E- 01 

NOV 9.10459 E- 08 4.83974 E- 09 8.52093 E- 08 9.46843 E- 01 
DEC 9.08572 E- 08 5.39477 E- 09 8.50327 E- 08 9.40624 E- 0 1 

JAN 9.06874 E- 08 7.64574 E- 09 8.48738 E- 08 9.15691 E- 01 

FEB 9.05269 E- 08 6.73010 E- 09 8.47235 E- 08 9.25656 E- 01 
MAR 9.03574 E- 08 6.05753 E- 09 8.45649 E- 08 9.32960 E- 01 

APR 9.01875 E- 08 4. 74897 E- 09 8.44059 E- 08 9.47343 E- 01 
MAY 8.99966 E- 08 5.65127 E- 09 8.42273 E- 08 9.37206 E- 01 

JUN 9.98291 E- 08 6.55453 E- 09 8.40705 E- 08 9.27033 E- 01 
JUL 8.96530 E- 08 5.60826 E- 09 8.39057 E- 08 9.37445 E- 01 
AUG 8.94710 E- 08 5.05456 E- 09 8.37354 E- 08 9.43506 E- 01 

SEP 8.92932 E- 08 4.92870 E- 09 8.35690 E- 08 9.44803 E- 01 
OCT 8.91158 E- 08 5.27794 E- 09 8.34030 E- 08 9.40774 E- 01 
NOV 8.89462 E- 08 6.87790 E- 09 8.32442 E- 08 9.22673 E- 01 
DEC 8.87695 E- 08 7.06523 E- 09 8.30788 E- 08 9.20409 E- 01 

JAN 8.85870 E- 08 6.42963 E- 09 8.29080 E- 08 9.27420 E- 01 

FEB 8.84393 E- 08 5.27539 E- 09 8.27698 E- 08 9.40350 E- 01 
MAR 8.82519 E- 08 4.83175 E- 09 8.25944 E- 08 9.45250 E- 01 
APR 8.80929 E- 08 6.56961 E- 09 8.24456 E- 08 9.25424 E- 01 
MAY 8.79149 E- 08 5.82020 E- 09 8.22790 E- 08 9.33797 E- 01 
JUN 8.77368 E- 08 6.25309 E- 09 8.21123 E- 08 9.28729 E- 01 
JUL 8.75451 E- 08 5.34 788 E- 09 8.19329 E- 08 9.38913 E- 01 
AUG 8. 73579 E- 08 5.32506 E- 09 8.17577 E- 08 9.39043 E- 01 
SEP 8.71760 E- 08 5.21891 E- 09 8.15875 E- 08 9.40134 E- 01 
OCT 8.69819 E- 08 4.86112 E- 09 8.14058 E- 08 9.44113 E- 01 
NOV 8.67890 E- 08 6.29083 E- 09 8.12253 E- 08 9.27516 E- 01 
DEC 8.66079 E- 08 5.73151 E- 09 8.10558 E- 08 9.33822 E- 01 
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Table (D.2) (Continu 

* ** *** Year Month Var (qj) B.V Vq,i Per 

1987 JAN 8.64438 E- 08 5.46208 E- 09c 8.09022 E- 08 9.36813 E- 01 

FEB 8.63063 E- 08 5.38890 E- 09 8.07736 E- 08 9.37561 E- 01 
MAR 8.61195 E- 08 5.09329 E- 09 8.05987 E- 08 9.40858 E- 01 

APR 8.59492 E- 08 6.25415 E- 09 8.04394 E- 08 9.27234 E- 01 
MAY 8.57887 E- 08 4.97293 E- 09 8.02892 E- 08 9.42033 E- 01 
JUN 8.57741 E- 08 5.30468 E- 09 8.02754 E- 08 9.38155 E- 01 

JUL 8.56068 E- 08 6.16668 E- 09 8.01189 E- 08 9.27965 E- 01 
AUG 8.54368 E- 08 4.36719 E- 09 7.99598 E- 08 9.48884 E- 01 

SEP 8.52465 E- 08 4.90765 E- 09 7.97817 E- 08 9.42430 E- 01 
OCT 8.50649 E- 08 5.12944 E- 09 7.96117 E- 08 9.39700 E- 01 

NOV 8.48800 E- 08 6.09967 E- 09 7.94386 E- 08 9.28138 E- 01 

DEC 8.46935 E- 08 6.03596 E- 09 7.92641 E- 08 9.28732 E- 01 

1988 JAN 8.45243 E- 08 7.19514 E- 09 7.91057 E- 08 9.14875 E- 01 

FEB 8.43640 E- 08 5.49767 E- 09 7.89557 E- 08 9.34834 E- 01 
MAR 8.41865 E- 08 4. 78908 E- 09 7.87896 E- 08 9.43113 E- 01 

APR 8.40160 E- 08 5.08968 E- 09 7.8630 I E- 08 9.39420 E- 01 
MAY 8.38467 E- 08 5.99365 E- 09 7.84716 E- 08 9.28517 E- 01 

JUN 8.36583 E- 08 5.76575 E- 09 7.82953 E- 08 9.31080 E- 01 
JUL 8.34583 E- 08 4.55263 E- 09 7.81081 E- 08 9.45450 E- 01 

AUG 8.33050 E- 08 6.06986 E- 09 7. 79646 E- 08 9.27137 E- 01 
SEP 8.31300 E- 08 5.14086 E- 09 7. 78009 E- 08 9.38159 E- 01 

OCT 8.29214 E- 08 4.49427 E- 09 7.76056 E- 08 9.45801 E- 01 
NOV 8.27343 E- 08 5.87368 E- 09 7.74306 E- 08 9.29005 E- 01 

DEC 8.25507 E- 08 7.08913 E- 09 7.72586 E- 08 9.14124 E- 01 

1989 JAN 8.23920 E- 08 6.98701 E- 09 7.71101 E- 08 9.15198 E- 01 
FEB 8.22401 E- 08 5.05909 E- 09 7.69680 E- 08 9.38484 E- 01 

MAR 8.20658 E- 08 5.29555 E- 09 7.68049 E- 08 9.35472 E- 01 
APR 8.18993 E- 08 4.98992 E- 09 7.66491 E- 08 9.39073 E- 01 

MAY 8.17201 E- 08 4.95584 E- 09 7.64814 E- 08 9.39356 E- 01 
JUN 8.15540 E- 08 6.23882 E- 09 7.63259 E- 08 9.23501 E- 01 

JUL 8.13964 E- 08 4.84346 E- 09 7.61784 E- 08 9.40495 E- 01 
AUG 8.12217 E- 08 4.31207 E- 09 7:60149 E- 08 9.46910 E- 01 
SEP 8.10440 E- 08 4.96138 E- 09 7.58486 E- 08 9.38782 E- 01 

OCT 8.08471 E- 08 4.85060 E- 09 7.56643 E- 08 9.40003 E- 01 
NOV 8.06659 E- 08 4.98956 E- 09 7.54947 E- 08 9.38145 E- 01 

DEC 8.04981 E- 08 5,95447 E- 09 7.53376 E- 08 9.26030 E- 01 
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Table (D.2) (Continue) 

* ** *** Year Month Var (qj) B.V Vq,i Per 

1990 JAN 8.03354 E- 08 6.28681 E- 09 7.51855 E- 08 9.21743 E- 01 

FEB 8.01889 E- 08 6.22588 E- 09 7.50483 E- 08 9.22360 E- 01 

MAR 7.99973 E- 08 4.96148 E- 09 7.48689 E- 08 9.37979 E- 01 

APR 7.98281 E- 08 4.59537 E- 09 7.47106 E- 08 9.42434 E- 01 
MAY 7.96530 E- 08 4.42792 E- 09 7.45467 E- 08 9.44410 E- 01 

JUN 7.94978 E- 08 4.70187 E- 09 7.44015 E- 08 9.40855 E- 01 
JUL 7.93267 E- 08 4.39175 E- 09 7.42413 E- 08 9.44637 E- 01 

AUG 7.91651 E- 08 5.27448 E- 09 7.40901 E- 08 9.33374 E- 01 
SEP 7.89925 E- 08 4.85617 E- 09 7.39286 E- 08 9.38524 E- 01 

OCT 7.88258 E- 08 4.81739 E- 09 737726 E- 08 9.38886 E- 01 
NOV 7.86630 E- 08 5.45173 E- 09 7.36203 E- 08 9.30695 E- 01 
DEC 7.85091 E- 08 6.07261 E- 09 7.34762 E- 08 9.22651 E- 01 

B.V = [ q( 1-q) I ni] represents lhe binominal variation. 

V q,i = [ var ( qi ) - q ( 1- q) I ni ] represents the extra varia lion . 
Per represents percentage of the extra binominal variation to the total varialibility . 
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Year 

1984 

1985 

1986 

Table (D.3) 

Binominal and Extra - Binominal Variatibility 
using beta - binominal parameters for the 

state of Qatar mortality data 

* Month B.V Extra V Per 

JAN 5.26191 E- 10 2.63597 E- 07 9.98008 E- 01 

FEB 5.25285 E- 10 2.63597 E- 07 9.98011 E- 01 
MAR 5.24412 E- 10 2.63597 E- 07 9.98015 E- 01 

APR 5.23470 E- 10 2.63597 E- 07 9.98018 E- 01 
MAY 5.22415 E- 10 2.63597 E- 07 9.98022 E- 01 

JUN 5.21487 E- 10 2.63597 E- 07 9.98026 E- 01 
JUL 5.20552 E- 10 2.63597 E- 07 9.98029 E- 01 

AUG 5.19586 E- 10 2.63597 E- 07 9.98033 E- 01 
SEP 5.18591 E- 10 2.63597 E- 07 9.98036 E- 01 
OCT 5.17542E-10 2.63597 E- 07 9.98040 E- 01 

NOV 5.16340 E- 10 2.63597 E- 07 9.98044 E- 01 
DEC 5.15469 E- 10 2.63597 E- 07 9.98048 E- 01 

JAN 5.14506E-10 2.63597 E- 07 9.98052 E- 01 

FEB 5.13595 E- 10 2.63597 E- 07 9.98055 E- 01 
MAR 5.12634 E- 10 2.63597 E- 07 9.98059 E- 01 

APR 5.11670 E- 10 2.63597 E- 07 9.98063 E- 01 
MAY 5.10587 E- 10 2.63597 E- 07 9.98067 E- 01 

JUN 5.09637 E- 10 2.63597 E- 07 9.98070 E- 01 
JUL 5.08638 E- 10 2.63597 E- 07 9.98074 E- 01 

AUG 5.07605 E- 10 2.63597 E- 07 9.98078 E- 01 
SEP 5.06596 E- 10 2.63597 E- 07 9.98082 E- 01 

OCT 5.05590 E- 10 2.63597 E- 07 9.98086 E- 01 
NOV 5.04628 E- 10 2.63597 E- 07 9.98089 E- 01 

DEC 5.03625 E- 10 2.63597 E- 07 9.98093 E- 01 

JAN 5.02590 E- 10 2.63597 E- 07 9.98097 E- 01 
FEB 5.01752 E- 10 2.63597 E- 07 9.98100 E- 01 

MAR 5.00689 E- 10 2.63597 E- 07 9.98104 E- 01 
APR 4.99787 E- 10 2.63597 E- 07 9.98108 E- 01 

MAY 4.98777 E- 10 2.63597 E- 07 9.98111 E-01 
JUN 4.97766 E- 10 2.63597 E- 07 9.98115 E-01 

JUL 4.96679 E- 10 2.63597 E- 07 9.98119 E-01 
AUG 4.95617 E- 10 2.63597 E- 07 9.98123 E- 01 
SEP 4.94585 E- 10 2.63597 E- 07 9.98127 E- 01 
OCT 4.93483 E- 10 2.63597 E- 07 9.98131 E- 01 

NOV 4.92389 E- 10 2.63597 E- 07 9.98136 E- 01 
DEC 4.91362 E- 10 2.63597 E- 07 9.98139 E- 01 



Table (0.3) (Continue) 

. 
* Year Month B.V Extra V Per 

1987 JAN 4.90430 E~ 10 2.63597 E- 07 . 9.98143 E- 01 
FEB 4.89651 E- 10 2.63597 E- 07 9.98146 E- 01 
MAR 4.88590 E- 10 2.63597 E- 07 9.98150 E-01 
APR 4.87625 E- 10 2.63597 E- 07 9.98154 E- 01 
MAY 4.86714 E- 10 2.63597 E- 07 9.98157 E-01 
JUN 4.86631 E- 10 2.63597 E- 07 9.98157 E- 01 
JUL 4.85682 E- 10 2.63597 E- 07 9.98161' E- 01 
AUG 4.84718 E- 10 2.63597 E- 07 9.98165 E- 01 

SEP 4.83638 E- 10 2.63597 E- 07 9.98169 E- 01 
OCT 4.82607 E- 10 2.63597 E- 07 9.98172 E- 01 
NOV 4.81558 E- 10 2.63597 E- 07 9.98176 E- 01 . 
DEC 4.80500 E- 10 2.63597 E- 07 9.98180 E~ 01 

1988 JAN 4.79540 E- 10 2.63597 E- 07 9.98184 E- 01 

FEB 4.78631 E- 10 2.63597 E- 07 9.98188 E- 01 
MAR 4.77624 E- 10 2.63597 E- 07 9.98191 E- 01 
APR 4.76657 E- 10 2.63597 E- 07 9.98195 E- 01 
MAY 4.75696 E- 10 2.63597 E- 07 9.98199 E- 01 
JUN 4.74627 E- 10 2.63597 E- 07 9.98203 E- 01 

JUL 4.73493 E- 10 2.63597 E- 07 9.98207 E- 01 
AUG 4.72623 E- 10 2.63597 E- 07 9.98210 E- 01 
SEP 4.71630 E- 10 2.63597 E- 07 9.98214 E- 01 
OCT 4.70446 E- 10 2.63597 E- 07 9.98218 E- 01 

NOV 4.69385 E- 10 2.63597 E- 07 9.98222 E- 01 
DEC 4.68343 E- 10 2.63597 E- 07 9.98226 E- 01 

1989 JAN 4.67443 E- 10 2.63597 E- 07 9.98230 E- 01 
FEB 4.66581 E- 10 2.63597 E- 07 9.98233 E- 01 
MAR 4.65593 E- 10 2.63597 E- 07 9.98237 E- 01 
APR 4.64648 E- 10 2.63597 E- 07 9.98240 E- 01 
MAY 4.63631 E- 10 2.63597 E- 07 9.98244 E- 01 
JUN 4.62689 E- 10 2.63597 E- 07 9.98248 E- 01 
JUL 4.61795 E- 10 2.63597 E- 07 9.98251 E- 01 
AUG 4.60803 E- 10 2.63597 E- 07 9.98255 E- 01 
SEP 4.59796 E- 10 2.63597 E- 07 9.98259 E- 01 
OCT 4.58678 E- 10 2.63597 E- 07 9.98263 E- 01 
NOV 4.57650 E- 10 2.63597 E- 07 9.98267 E- 01 
DEC 4.56698 E- 10 2.63597 E- 07 9.98270 E- 01 
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Table (0.3) (Continue) 

* Year Monlh B. V Exlra V Per 

1990 JAN 4.55775 E- 10 2.63597 E- 07 9.98274 E- 01 

FEB 4.54944 E- 10 2.63597 E- 07 9.98277 E- 01 
MAR 4.53857 E- 10 2.63597 E- 07 9.98281 E- 01 

APR 4.52897 E- 10 2.63597 E- 07 9.98285 E- 01 
MAY 4.51903 E- 10 2.63597 E- 07 9.98289 E- 01 

JUN 4.51023 E- 10 2.63597 E- 07 9.98292 E- 01 
JUL 4.50052 E- 10 2.63597 E- 07 9.98296 E- 01 

AUG 4.49136 E- 10 2.63597 E- 07 9.98299 E- 01 
SEP 4.48156 E- 10 2.63597 E- 07 9.98303 E- 01 
OCT 4.47211 E- 10 2.63597 E- 07 9.98306 E- 01 

NOV 4.46287 E- 10 2.63597 E- 07 9.98310 E- 01 
DEC 4.45154 E- 10 2.63597 E- 07 9.98313 E- 01 

* Exlra V. = ~ ( 1 - ~ ) e ( 1 - 1/ni ) reprcsenls lhc cxlra varia lion . 
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