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ABSTRACT 

This paper considers adaptive position control of a permanent magnet (PM) 
stepper motor using exact linearization via static state-feedback. Physical 
outputs are chosen in such a way that the resulting closed-loop system is 
linearized and decoupled. The objective of the adaptive controller for a PM 
stepper motor is to achieve output tracking between the motor outputs and 
prescribed reference signals in presence of parameter uncertainties. This will 
be achieved by incorporating a parameter identification scheme in the 
nonlinear state-feedback control law. Simulation results are presented and 
discussed. 

INTRODUCTION 

Stepper motors are electromechanical devices that convert input digital 
pulses into an output analog motion. Permanent magnet stepper motors are 
simple, low cost, and reliable motors compared with the widely used de 
motors. Moreover, compared with other control systems, a control system using 
a .stepper motor has the advantages that no feedback is normally required for 
either position or speed control and the position error is non-cumulative. 
However, the performance of a PM stepper motor is limited using open-loop 
drive. For instance a stepper motor driven in the open-loop mode may fail to 
follow a pulse command when the pulse train frequency is too high or the 
inertial load is too heavy. Also, the motor performance tends to be oscillatory 
in the open-loop mode. The performance of a stepper motor can be improved to 
a great extent by employing either position or velocity feedback. Closed-loop 
control of a PM stepper motor is advantageous over open-loop control not only 
in that the step failure never occurs but also the dynamic behavior is much 
quicker and smoother [1]. 
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Recently, there has been a great deal of interest in the use of state feedback 
to linearize different electromechanical systems. A feedback linearizing control 
of switched reluctance motor is investigated in [2]. De luca and Ulivi [3] have 
used a state feedback linearizing control technique to design a controller for 
induction motor torque and flux. Chiasson [4] has developed a feedback 
linearization of a sixth -order nonlinear dynamic model of induction motor. A 
two-time scale nonlinear control design technique along with a linearizing 
controller [5] are used to control a switched reluctance motor where the 
linearizing controller reduces the motor torque ripple. Position control of a PM 
stepper motor by exact linearization is presented in [6]. Nonlinear full and 
reduced -order speed observers for a PM stepper motors are developed in [7]. 

In this paper, adaptive position control of a PM stepper motor using an 
exact linearizing technique is considered. The paper is organized as follows: in 
section II, mathematical modeling of the PM stepper motor is presented. The 
nonlinear control design technique is presented in section III. The adaptive 
control design of the motor using the linearizable static state-feed back is 
outlined in section IV. The main result is given in section V. Simulation 
results and conclusions are given in sections VI and VII respectively. 

MATHEMATICAL MODEL OF THE PM STEPPER MOTOR 

A dynamic model of a two-phase PM stepper motor can be described by 
the following equations [ 1]: 

dia 1 
=-[Va-Ria+ Km COm sin(Nr Bro.)] 

dt L 

d· 
~ 
dt 

1 
= L [Vb- Rib- Km COm cos(Nr Bm)1 

dcom 1 
=- [Km ib cos(Nr Bm)- Km ia sin(Nr Bm)- D COm] 

dt J 

dBm 
dt 
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: voltage applied to phase a 
: voltage applied to phase b 
: current in phase a 
: current in phase b 

: motor angular speed 

: motor angular position 
: stator winding resistance per phase 
: stator winding inductance per phase 
: Viscous friction coefficient 
: motor and load inertia 

Km : motor torque constant 
N r : number of rotor teeth 

For convenience, let K 1 = -R /L, K2 = Km /L, K3 = Km /J and K4 = -D/J. 

If the state vector x and the control input u are defined as xT = [ia. h. lVm. Bm] 

and UT = (1/L) [Va• vb] then equations (1) can be put in the form: 

(2) 

where 

gf = [1 0 0 0] and gJ =[0 1 0 0] 

Equations (2) are nonlinear coupled differential equations representing the 
dynamics of a PM stepper motor. 
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NONLINEAR CONTROL DESIGN TECHNIQUE 

Consider a square multi-input multi-output nonlinear plant described by 

m 

X= f(x)+ Lgi(x)ui 
i=l 

y = h(x) =[h1{x), .......... ,hm(x)r } (3) 

where xEl}f, uE9{m, yE9{m and f, gi and hi, i=1,2 ... m are 

smooth functions, i.e. continuously differentiable. A common approach to 
control such a system, based on the differential geometric control theory [8], is 

to look for a nonlinear state transformation Z = T( x) E 9{ n which maps the 
nonlinear control problem into a linearized one via state-feedback. In the 
transformed new coordinates, one may try to find a state-feedback law of the 
form 

u=A(x)+B(x)v (4) 

with B(x) nonsingular such that the nonlinearities are canceled and the resulting 

closed-loop system is linear and decoupled. Now define Y? to be the y jth 

derivative of y j with respect to time and y j , j = 1, .... m to be the smallest 

integer such that at least one of the inputs appears in r· . Y/ ' I.e. 

m 
+ L Lg (Lf;-1 hj) Uj 

i =1 • 
(5) 

Y.-J 
with at least one of the Lgi (Ll h j) ui * 0 for some x. 

Equations (5) may be written for j = l, ........ m in the following form 
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y~ 
+A(x) [IJ (6) 

where 

A(x) = 

1. In (5) and (6), Lc h(x) = 8h 
-f(x) : 9{n ~ 9{ stands for the Lie 
8x 

derivative of h(x) with respect to f [8] and is given by 

m 8 h(x) 
Lc h(x) = r f(x). 

i=l 8 X 
The Lie derivative of h(x) repeated K 

times is denoted by L; h(x). If the matrix A(x) e 9{mxm is non-singular 
for all x, then the state-feedback law (4) can be chosen from (6) as 

I:fl hl 

u=-A-1(x){ (7) 

Lfm hm 

The control law (7) yields the following linear and decoupled closed-loop system 
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=[I] (8) 

where v E 9{m is a reference input vector. If the system (3) has strong 

relative degrees rl ' r2 ' ......... ' r m where 

m 
L: Yi = n 

i=l 

then the transformations 

Tl (x) = hl (x) 

Tr, (x) = Lt h1 (x) 
Trt• (x~ = h2 (x) 

Ty+y +······r +I (x) = hm (x) 
1 2 m·l 

(9) 

(10) 

represent a diffeomorphism of the state variables x [9], [10]. Moreover, with 
the condition (9) satisfied, system (3) has no zero dynamics and therefore is a 

minimum phase. In fact the outputs h1 ( x), · · · · · ·, hm ( x) have a set of relative 
degrees equal to Kronecker indices [11]. 
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ADAPTIVE CONTROL DESIGN OF A PM STEPPER MOTOR 

Linearizable Feedback Control Law 

The nonlinear transformation which converts the nonlinear equations of the 
motors (2) into a nonlinear control canonical form is given by [6]: 

Since the Kronecker indices of the PM stepper motor are Y, = 3 and Y
2 

= 1, 
the motor equations (2) can be transformed to the following nonlinear control 
canonical form 

x=((x)+B*(x)u 
(12) 

where f*(x) = [Z2,Z3,LfT3(x),LfT4(x)]T and 

Using (10), the motor outputs can be chosen as 
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YI = hi (x) = TI (x) = x4 

K3 

Y2 h2 (x) = T4(x) =XI cos(Nrx4) + xzsin(Nrx4) 
(13) 

where the output y 1 represents the motor angular position and the output y 
2 

represents the motor direct-axis current ld • Now, equations (6) for 

r, = 3 and r2 = 1 can be rewritten as 

[ y~] [Li h1 (x)] [U1] 
= +A(x) 

y~ Lr h2 (x) U2 

(14) 

where 

] 
Performing the mathematical manipulation in (14) yields 

[:~] = ~~:J +A(x) [::] 
(15) 
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where 

2 

a(x) = ( Kl + K4) iq + ( K4 - Kz) X3 - Nr id X3 
K3 

__ [-sin (Nr X4) 
A(x) 

COS (NrX4) 

cos (Nr X4) ] ' 

sin (Nr x4) 

id and iq are the currents in the direct and quadrature axis of the motor and are 

given by 

sin (Nr X4) ] [X1 ] 

COS (Nr X4) X2 
(16) 

Note that the matrix A( x) represents the last two rows of the matrix B • ( x) 
given in (12). The state-feedback linearizing control is determined from (15) as 

(17) 

or in a compact form 

u= A-1(x){v-Q(x)} (18) 

where vT = [ v1 v2] and QT (x) = [ a(x) {J(x) ]. 
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Adaptive Position Tracking 

The objective of the adaptive control of the PM stepper motor considered in 

this paper is to make the motor outputs y I and y 
2 

track prescribed reference 

trajectories y mi and y m2 in presence of parameter uncertainties. In this case, 

the control inputs VI and v2 can be chosen to be 

v1 = Y~l +az(Y~l -yf +a1(Y!n1 -y})+ao(Yml -yl} 

vz = Y!nz + bo(Ym2- Yz) 
(19) 

where 

ai for i = 0,1,2 and b0 are selected such that (s3 + a2 l + a1s+ a0) and ( s + b0) 

are Hurwitz polynomials. In order to achieve the desired output tracking, the 

nonlinear system has to be minimum phase [9]. Since yi + y
2 

= n = 4, the 
stepper motor model has no zero-dynamics and therefore is minimum phase. In 
presence of parameter uncertainties due to unknown friction and/or loads, the 
adaptive version of the control law (18) can be obtained by incorporating a 
parameter estimation scheme . This can be done by replacing (18) by 

(20) 

where Qe ( x} is the estimated value of the vector Q(x). Substituting (20) into 
(15) gives 

[ YY2311] = v + { Q(x) -Qe(x)} (21) 

Now, equations (19) are used in (21) to get 
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[ 

3 2 I ] ... + ., ... 1 + .1 ... + ..... 

eoz + boeoz 

=<l> (22) 

where 

eo
1 

= Ym
1

- Y1 and eo
2 

= Ym
2

- Y2 and the vector <l> e 9{
2xl is the 

~arameter error vector defined as <l> = [Qe (x)- Q(x)] 

MAIN RESULT 

The parameter update law 

<i>= (23) 

(24) 

where 

will yield a bounded tracking error if the transfer functions 

G,(s) = 
2 s + r1s+ ro and 

Gl(s) = 1 

s+bo 

63 



Hasan A. Yousef 

are strictly positive real (SPR). The definition and the necessary and-sufficient 
conditions for a rational function to be strictly positive real are presented in the 
Appendix. 

Proof: 

Using (22) and (24) we get 

} (25) 

where g1 and g
2 are the impulse responses of G1 (s) and G2 (s) 

respectively, and 

ae(x) and fie(x) are the estimated values of a(x) and fi(x). By the Kalman­

Yacubovitch-Popov lemma [12] , the SPR transfer function G 1 (s) can be 
realized in a state-space form, as follows 

eml = rl eu + hi <I>u 
ell = c[ eml 

ci>u = - c[ eml 
} 

where Plrl + riP! = - sl ' PI bl = cl 
positive definite matrices. A positive 

(26) 

and P 1 and S1 are symmetric 
definite Lyapunov function 

is selected and its time derivative along the 

trajectories of (26) is found to be Hence 

0 < ,U1(t) < ,U1(0) for all t > 0. Therefore em1 , eu and <I>u are 
approaching zero as the time is approaching infinity. Also, since the system has 
no zero dynamics, all the states are asymptotically stable [13]. The proof is 

quite similar for em2 , e21 and <1>21 using the state-space realization of 

G2(s) . 

64 



Nonlinear Adaptive Control of a P.M Stepper Motor 

SIMULATION RESULTS 

The one step motion control of a PM stepper motor going from phase b to 
phase a is investigated using the proposed adaptive control law. The motor 
parameters are [6]: 

R= 10.0 !l,L= O.OOllH, D=0.001N.m.sec, J=5.7x 10-6N.m.sec2 ,Km 
= 0.113 and Nr = 50. If the motor starts from phase b ( ib = io = 0. 75 and 

ia = 0.0), the motor position is given by x4 = (90/Nr) degree. Going to 
phase a (ia=0.75 and ib = 0.0), the position is given by x4= 0 or x4 = 

(180 IN r) degree depending on whether the rotation is clockwise or counter­
clockwise. The motor is simulated when tb.e adaptive control and the parameter 
update laws (20), (23) and (24) are incorporated in the dynamical model of the 

motor. The coefficients of the transfer functions G1 (s) and G2 (s) are selected 

as: a0 = 200, a1 = 3200, a2 = 130, r0 = 1000, r1 = 100 and bo = 10. 
This set of coefficients is picked in such a way that the SPR conditions listed in 
the Appendix are satisfied and satisfactory dynamic response is achieved. The 
motor position and the direct-axis current along with the reference signals are 
shown in Fig. 1 and Fig. 2 respectively. These two figures display the tracking 
behavior between the actual motor outputs x4 and id and the reference signals 

y and y . The error between the reference signals and the actual outputs of 
111t Ml 

the motor is bounded by zero . The input phase voltages V a = u 1 L and V b = 
u2 L are shown in Fig.3 and Fig. 4. It is clear that both control input signals 
are bounded. Note that Vb is switched from the full phase voltage of 7.5 V to 
zero and that V a is switched from zero to the full phase voltage indicating that 
the motor is ready to move from phase a to phase b. The phase currents ia and 
ib are shown in Fig.S and Fig.6. These figures demonstrate the boundedness 
and the switching behavior of the motor currents. 
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Fig. 1: Motor and reference angles 
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Fig. 2: Motor and reference d-axis currents 
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Fig. 4: The control signal vb 
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Fig. S: The phase current i8 
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Fig. 6: The phase current ib 
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CONCLUSIONS 

The paper presents an adaptive controller to achieve output tracking of a 
PM stepper motor in the presence of parameter uncertainties in the motor model. 
The controller is based on static feedback in order to linearize and decouple the 
closed-loop system. An identification scheme is incorporated in the control law 
to estimate the unknown parameters. The main result shows that the tracking 
error is guaranteed to be bounded if certain transfer functions are SPR. 
Simulation results show the effectiveness of the proposed controller in achieving 
the desired tracking performance. 
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APPENDIX 

Positive Real and Strictly Positive Real Functions 

A rational function G(s) of the complex variable s = a + j aJ is positive real 
(PR) if: 

1. G(a) e 9t for all a e 9t 

2. Re [G(a + j w)] ~ 0 for all a> 0, w ~ 0. 

The function G(s) is strictly positive real (SPR) if, for some 
e > 0 , the functinon G(s- e) is PR. It can be shown [14], [15] that a 
strictly proper transfer function G(s) is SPR if and only if it satisfies all of the 
following conditions : 

1. G(s) is stable, i.e. the denominator polynomial is Hurwitz 
2. G(s) is minimum phase, i.e. the numerator polynomial is Hurwitz. 
3. Re[G(jw)] > 0, for all aJ ~ 0. 

4. lim w2 Re[G(jw)] > 0. 
Ill-+ cO 

In order that G1 ( s) and G2 ( s) are SPR, the above conditions are applied 
resulting in the following coefficient constraints: 

1. ao > 0 ' a2 > 0 ' a I a2 > 0 
2. r0 > 0 , r 1 > 0 

3. a2 > r1 , ao ro > 0 

4. >ao 
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