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ABSTRACT 

This paper is concerned with the calculation of the moments exerted by a 
viscous fluid on the walls of a cylinder that is spinning about its axis and 
coning about an axis that passes through its center of mass. For small 
coning angles and/or coning frequencies, these moments are estimated by 
solving the linearized Navier-Stokes equations. Solving the linearized 
Navier-Stokes equations is computationally expensive. Fortunately, when 
using the control volume approach to calculate these moments, these 
moments depend essentially on the axial velocity, and the linearized 
equations describing the deviation of the fluid motion from solid body 
rotation can be reduced to a single sixth-order partial differential equation 
governing the axial velocity. This single equation is solved by expanding 
the axial velocity in a triple series made of Fourier functions in the 
azimuthal direction and Chebyshev polynomials in the radial and axial 
directions. For linear analysis, only the fundamental component in the 
azimuthal direction is needed for the evaluation of moments and the triple 
series is reduced to a double Chebyshev expansion in the radial and axial 
directions thereby reducing the three-dimensional problem into a two­
dimensional one. The results obtained by Chebyshev expansion show good 
agreement with those obtained by using eigenfunction expansion. 

INTRODUCTION 

Spin-stabilized liquid-filled projectiles are known to experience severe 
dynamical instabilities owing to the motion of their liquid payload. For 
cylinders completely filled with a single fluid we know two types of 
instabilities that are excited by the coning motion of the projectile about its 
flight trajectory. One of the instabilities is caused by resonance with inertial 
waves at critical coning frequencies (ratio of the coning rate n to the spin 
rate ro) and is most pronounced for fluids of low viscosity, i.e. high 
Reynolds numbers. We define the Reynolds number as Re=roa2/v, where a 
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is the radius of the cylinder and v is the kinematic viscosity of the liquid. 
This instability is known to strongly depend on the cylinder aspect ratio 
(ratio of the length 2c of the cylinder to its diameter 2a). For stable designs, 
the aspect ratio is properly chosen to avoid resonance for a given coning 
frequency. The other kind of instabilities is due to viscous stresses applied 
on the walls of the payload container and is most pronounced for fluids of 
high viscosity, i.e. low to medium Reynolds numbers, for a wide range of 
aspect ratios and coning frequencies. 

Quite a few theories, employing different approximations, have been 
proposed for the purpose of understanding both types of instabilities and, to 
gain capabilities in the evaluation of the moments caused by the liquid 
payload. The Stewartson-Wedemeyer theory (Stewartson 1959; Wedemeyer 
1966) employs the boundary-layer approximation as a basis. Since this 
approximation is only valid for flows at sufficiently large Reynolds numbers, 
say Rt21000, the theory is primarily suited to predict instability caused by 
inertial waves. Analysis based on the Navier-Stokes equations (Herbert & Li 
1987, 1990) shows, however, that resonance with inertial waves may 
severely influence the liquid moments at Reynolds numbers as low as 
Re=100. 

An improvement to the Stewartson-Wedemeyer theory has been 
proposed by Kitchens, Gerber, and Sedney (KGS) (see for example Murphy 
1991). While the Stewartson-Wedemeyer theory uses the boundary layer 
approximation in both the radial and axial directions, the KGS method 
employs the boundary layer approximation only in the axial direction and 
solves the linearized Navier-Stokes equations in the radial direction. 

A method for solving the full linearized Navier-Stokes equations has 
been suggested by Hall, Sedney, and Gerber (HSG) (Hall et al. 1990). This 
approach expands velocity components and pressure in a series of products 
of complex trigonometric functions in axial direction and radial 
"eigenfunctions" that satisfy homogeneous boundary conditions at the side 
wall. The expansion coefficients of the series can be found from the 
boundary conditions at the end walls by collocation or least squares. While 
this method has the potential of treating both types of instabilities, its 
shortcoming is in the numerical determination of eigenvalues and 
eigenfunctions. For given parameters, the eigenvalues for the HSG expansion 
are obtained by iterative solution of a sixth-order complex system of ordinary 
differential equations and are difficult to find. Good initial guesses are 
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required for the iteration to converge. This problem is currently overcome by 
precalculating voluminous tables for interpolation from the initial estimates. 

Selmi, Li, and Herbert (SLH) (Selmi et al. 1992) have developed an 
alternative method to calculating the moments from the full linearized 
Navier-Stokes equations. The SLH approach is based on the observation that 
when using a control volume analysis to calculate the moments, these 
moments depend essentially on the axial velocity. They have derived a single 
sixth-order partial differential equation for the axial velocity component and 
solved it by eigenfunction expansion. The eigenfunctions are given in closed 
form and the eigenvalues are determined by numerically solving a system of 
closed form characteristic equations. Since the eigenfunctions are given in 
closed form, their analytical integrability leads to accurate evaluation of the 
moments when using the control volume formulation. 

The eigenvalue problem associated with the SLH method is a sixth-order 
complex eigenvalue problem and is quite difficult to solve. Accounting for 
all eigenvalues especially near the origin of the complex plane is crucial to 
the convergence of the method. Here, we present an alternative method to 
solving the sixth-order partial differential equation governing the axial 
velocity by Chebyshev expansion and compare the results with those 
obtained by eigenfunction expansion of Selmi et al. (1992). 

GOVERNING EQUATIONS 

We consider the steady flow of a viscous fluid of density p and viscosity 
f..l inside a cylinder of radius a and length 2c. The cylinder is rotating about 
its axis at the spin rate co and rotating about an axis that passes through its 
center of mass at the coning rate n. We use Cartesian coordinates x, y, z, 
where z is the spin axis and x is normal to z and coplanar with both the spin 
axis and the coning axis Z. The angle between spin axis and coning axis is 
denoted by 9, as shown in figure 1. The governing equations of the motion 
of the fluid inside the cylinder represent both conservation of mass and 
momentum. When written with respect to the coning system (.x, y, z), that 
rotates about the Z-axis of the inertial system (X, Y, Z) at the coning rate n, 
they take the form 

'V. v = 0, (la) 
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[
DV A A ( A )] p Dt +2!lk xV +!lkx !lk xr = -VP+J.lV 2V, 

A 

where V and P denote the velocity and pressure respectively, k is a unit 
vector in the Z direction, and r is the position vector. 
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Figure 1: Description of geometry 

X 

(lb} 

The flow quantities are made dimensionless by using p to scale mass, a 
to scale length, and ro to scale time. The problem then depends on the aspect 
ratio T)=a/c, the coning frequency -r=Q/ro, the coning angle 9, and the 
Reynolds number Re = ro a2 /v, where v denotes the kinematic viscosity. 
Hence, from here on all flow quantities are dimensionless. They are also best 
described in cylindrical coordinates (r, ~. z), where r is in the radial 
direction, ~ is in the azimuthal direction, and z is in the axial direction. 
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Moreover, it is convenient to split the velocity and pressure (Herbert 1985) 
according to 

V = v• + v, (2a) 

(2b) 

where V
8 = r ~ with ~ denoting a unit vector in the azimuthal direction, is 

the velocity due to solid-body rotation, and p• is chosen so that the forcing 
terms in the governing equations reduce to only one term present in the z­
momentum equation, 

(3) 

where 't, =-&cos(<!>), 'ttjl =&sin(<!>), 'tz = 'tcos(9), and & = 'tsin(9). 

The equations governing the cylindrical components v, Vtj~, Vz of the 
deviation of the velocity from solid-body rotation and the perturbation 
pressure l have been derived by Herbert (1985). They take the form 

1 a a a 
--(rv )+-(v )+-(v ) = 0 rar r ap tjl az z ' (4) 

D'v - v~- 2(1+'t )v +2't v =- ()pd +-
1
-[D"v -~-~ avtjl] 

r z tjl tjl z a R r 2 2 ;w,. ' r r e r r""¥ 
(5) 

D'v - v,vtjl +2(1+'t )v -2't v = _ _!_ ()pd +-1-[D"v - vtjl +~ av,} 
tjl r z r , z r ap Re tjl r2 r2 ap 

(6) 

v 2 a d 1 
D'v -i+2't v -2't v =-_1!_-2rt +-[D"v 1 (7) 

z r r tjl tjl r az , Re z 

where 
I a a a Vtjl a a 

D=-+-+v -+---+v-at ap 'ar rap zaz' 
and 
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These equations are supplemented by the no-slip conditions at the end walls 
(z = ±11), 

v = v ... = v = 0 at z = +n 
r ,. z ·' ' -·b (8) 

and the no-slip conditions at the side wall (r= 1), 

v r = v cp = v z = 0, at, r = 1. (9) 

The only forcing of the flow quantities comes from the term 
-2rt, = 2ar cos<!> present in the z-momentum equation. When this term 
vanishes, e = 0, the governing equations admit the trivial solution v = 0, 
pa = 0. Hence, the velocity deviation from solid-body rotation is 0( a). 
Moreover, if (v,, vcp, vz,pa) is the solution at (r, lj>, z), the solution at (r, 

lj>+1t, -z) is (v, vcp, -Vz, pd). These symmetries are exploited to save 
computational power. Furthermore, in practical applications of interest, the 
parameter & is small, i.e. e ~ 0.057 for 8 ~ 20°' n ~ 500 rpm, and 
ro 2:: 3 000 rpm. Since the flow quantities are 0( e), then for sufficiently 

small &, it is well justified (Herbert 1985) to use & to linearize the governing 
equations. When this is done, the continuity equation remains unchanged, 
while the momentum equations are written in vector form, 

a a 1 2 
-v+2rt,ez +2'txv+Vp --V v= 0, 
a<!> Re 

(10) 

where e z is a unit vector in the z direction and 't = ( 0, 0, 1 + 't z). These 
equations support the additional symmetries: v(r, <I>+ rc, z) = -v(r, <!>, z) and 

pa(r,<J> + rc, z) =-pa(r, <I>, z). 

EVALUATION OF MOMENTS 

While it is best to use cylindrical coordinates (r, lj>, z) to describe the 
velocity and pressure, it is convenient to use the aeroballistic reference frame 
(x, y, z) to express the moment in terms of Cartesian components (Mx, My, 
Mz). It can then be shown (Herbert & Li 1987, 1990;Murphy 1985, 1991) 
that these components are related to the flow velocities by 
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0 ,2111 

Mx = 2-(pro2a 5 )cos8 I I I vzr2 cos<j>drd<j>dz, 
0) -l) 0 0 

(lla) 

Mz = Mtane, (llb) 

0 l)2111 

My = 2-(pro2a 5
)cos8 I I I vzr 2 

sin <j>drd<j>dz 
0) -l) 0 0 

0 l)2111 

+-(pro2a 5 )sinei IIvcJ~r 2 drd<j>dz. (llc) 
0) -l) 0 0 

The above formulae are only valid for steady state conditions as it is the case 
here. For unsteady flows, the reader is referred to the study by Li & Herbert 
(1991) for appropriate evaluation of the moments. 

We represent the velocity field by the Fourier series 

ex: 

v(r,<j>,z)= L:vn(r,z)ein<ll, vn =(un,vn,wn), (12) 
n=-oc 

where F = -1. It is then evident from the expressions of the moments, upon 
performing the integrations over <j>, that we need only consider the Fourier 
components w1 and v0 . If the flow quantities are expanded in powers of E, it 
becomes obvious that w1 is O(E), since the forcing term in the equations of 
O(E) is simply periodic, and v0 is 0(E2

). In what follows, we will concentrate 
on how to solve for w1• 

AXIAL FLOW EQUATIONS 

An equation governing w1 has been derived by Selmi, Li, and Herbert 
(1992). It is based on equations (10) and takes the form 

2 2i 4 1 6 2 8
2w 

V w+-V w--V w-'t8 -=0 (13) 
Re Re 8z2 

' 

where 'te = 2(1 +•z), w1(r, z)=Ew(r, z), and 

157 



M.Selmi 

The derivation of the boundary conditions that accompany this equation is 
very tedious and we limit ourselves to just presenting them. Interested 
readers are encouraged to consult the dissertation by Selmi (1991) for 
detailed derivations of such boundary conditions. At the end walls (z=±rj), 
these conditions take the form 

Ow . 0
2W 1 [ 2 0

3W 0
5W] w=0,-=0,-J--3 +- 2V1 --

3 
+--

5 
=0, oz oz Re oz oz (14) 

where 

2 o2 1 a 1 v =-+----
1 Or2 r Or r2' 

while at the side wall (r= 1), they are 

w=O, (15a) 

(15b) 

12 . aw a 2 --V w+t TRe--t -(V w) r I e Or eOr I 

(15c) 

CHEBYSHEV EXPANSION 

Before presenting the details of the solution of Eq. (13) subject to 
boundary conditions (14) and (15), we like to mention that when w was 
expanded in a straight-forward double Chebyshev series in r and z and the 
governing equations were satisfied by collocation, the convergence of the 
solution was poor. We suspect this is due to the singularity of the solution at 
the corners. 

To remedy this problem, we find it best to split the solution into two 
parts, one corresponds to the infinitely long cylinder that is readily expressed 
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in terms of analytical functions and another solution we seek. The resulting 
boundary conditions for the newly sought solution are homogeneous at the 
corners. In addition, an asymptotic analysis near the corners revealed that 
such a solution behaves smoothly and much simpler than the one of the 
original formulation. This leads us to believe that we could achieve better 
convergence when we adopt the new formulation. Since the solution 
corresponding to the infinitely long cylinder satisfies Eq. (13), the newly 
sought solution is also governed by this equation. We thus assume a solution 
to equation (13) of the form 

(16) 

where / 1 is the modified Bessel function of order 1 and l = i Re. In equation 
(16), the first term on the right hand side is the solution corresponding to the 
infinitely long cylinder and for the second term, the basis functions <pm and 
'l'n are linear combinations of Chebyshev polynomials, 

(17) 

(18) 

The above choice of expansion functions permits us to satisfy the no-slip 
condition at the side walls and the no-gradient condition at the end walls 
implicitly. Note that we have exploited symmetry by choosing even 
polynomials in z and odd polynomials in r. 

We substitute the assumed solution into the governing equations and the 
rest of the boundary conditions that were not satisfied implicitly---two at one 
end wall and two at the side wall. The resulting equations are satisfied in the 
least squares sense at the Gauss-Radau collocation points, 

r. = cos( }1t ) 1· = 0 · · · M 
1 2M +1' ' ' ' 

(19) 

1m 
Zk = 11COS( ), k = 0,-··,N, 

2N+1 
(20) 

to solve for the Chebyshev coefficients Cnu'" 
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For this expansion, we have also found that it is critical to satisfy the 
governing equation at the boundaries. We suspect this is due to the rapid 
change of the solution and its derivatives near the walls especially at high 
Reynolds numbers. The complexity of the boundary conditions prevents us 
from knowing whether a spectral convergence could be achieved. Because we 
had to satisfy the equation on the boundaries and some of the conditions at 
the corners become degenerate, we were not able to cluster the collocation 
points in such a way as to obtain the same number of algebraic equations as 
the number of unknown coefficients. Therefore, we have chosen the 
collocation points in such a way as the number of equations exceeds the 
number of unknowns and have used the discrete least squares approach to 
solve such a system. 
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Figure 2: Dimensionless roll moment versus Reynolds number for 
•=0.16667, YJ=4.368, and 8=20°. Comparison of the results 
obtained by eigenfunction expansion (-) and those obtained by 
Chebyshev expansion (fl) 

CALCULATION OF MOMENTS 

We use the volume integral approach which has been discussed in a 
previous section to calculate the moments. We find 

(21) 
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(22) 
where 

S =-i --~ + L::~::Cmnf r\pm(r)drf \Vn(llz)dz, 
- [ 1 I ( ) ] M+2N+2 I I 

4 q/1 ( q) m=l n=l 0 o 
(23) 

and /2 is the modified Bessel function of order 2. Note that the moments can 
be made dimensionless by scaling them using (pa\i/). 

We have calculated these moments for •=0.16667, 11 =4.368, 9=20°, 
and a wide range of Reynolds number. The results for the roll, pitch, and 
yaw moments are shown as functions of Reynolds number in figures 2 
through 4 respectively. The results were obtained with a Chebyshev series of 
38 x 38 (N=M=36) polynomials and the computation for a given value of 
the Reynolds number takes about 157 seconds on a Cray Y-MP8/864. In the 
same figures, we plotted the moments obtained by eigenfunction expansion 
(Selmi et. al, 1992) and as can be seen the results compare very well. For 
detailed comparisons, we have tabulated these moments obtained by the 
Chebyshev expansion in table 1 and those obtained by eigenfunction 
expansion in table 2. A quick glance at both tables reveals that the values 
agree to within 4 digits of accuracy. 
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Figure 3: Dimensionless pitch moment versus Reynolds number for 
•=0.16667, rt=4.368, and 9=20°. Comparison of' the results 
obtained by eigenfunction expansion (-) and those obtained 
by Chebyshev expansion (M 
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Figure 4: Dimensionless yaw moment versus Reynolds number for 
•=0.16667, l"]=4.368, and 8=20°. Comparison of the 
results obtained by eigenfunction expansion (-) and those 
obtained by Chebyshev expansion (~) 

We have also calculated these moments at constant Reynolds number but 
with different number of polynomials in the expansion. Table 3 and 4 show 
the values computed for Re=20 and Re= 1000 respectively. The results for 
the error between the moments computed by the Chebyshev expansion and 
high resolution values obtained by eigenfunction expansion are shown in 
figures 5 and 6 for Re=20. At this relatively low Reynolds number, the 
moments converge to within 4 digits of accuracy with at least 20 polynomials 
in each direction. However, the number of polynomials increases as the 
Reynolds number increases. For Re= 1000, figures 7 and 8 show that the 
number of polynomials in each direction must be in excess of 35 polynomials 
in order to achieve similar accuracy. 
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Table 1: Dimensionless moments versus Reynolds number obtained by 
38x38 Chebyshev expansion for Re=20, 11=4.368, •=0.16667, 
and 9=20° 

Mxl (pro 2 a5
) Mv/(pro2 a5

) M./(pro2 a} Re 
.000010 .000000 .000004 .001000 
.000748 -.000283 .000272 .100000 
.004434 -.000356 .001614 .500000 
.009066 -.000019 .003300 1.000000 
.018067 .001608 .006576 2.000000 
.026556 .004234 .009666 3.000000 
.048014 .016216 .017476 6.000000 
.053714 .021045 .019550 7.000000 
.058702 .026064 .021366 8.000000 
.066721 .036252 .024284 10.000000 
.082432 .078284 .030003 20.000000 
.083760 .103709 .030486 30.000000 
.082560 .120231 .030049 40.000000 
.080834 .132174 .029421 50.000000 
.078966 .141425 .028741 60.000000 
.077073 .148913 .028052 70.000000 
.075206 .155159 .027373 80.000000 
.073394 .160484 .026713 90.000000 
.071651 .165102 .026079 100.000000 
.058311 .191909 .021224 200.000000 
.050140 .204589 .018249 300.000000 
.044637 .212284 .016246 400.000000 
.040626 .217570 .014787 500.000000 
.037537 .221483 .013662 600.000000 
.035058 .224530 .012760 700.000000 
.032989 .226977 .012007 800.000000 
.031211 .228956 .011360 900.000000 
.029680 .230521 .010803 1000.000000 
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Table 2: Dimensionless moments versus Reynolds number obtained by 
eigenfunction expansion for Re=20, "11=4.368, 't=0.16667, and 
0=20° 

Mxl(pro2a5
) Mvf(pro2a5

) Mzl(pro2a5
) Re 

.000754 -.000278 .000275 .100000 

.004470 -.000316 .001627 .500000 

.009064 .000029 .003299 1.000000 

.018029 .001647 .006562 2.000000 

.026455 .004245 .009629 3.000000 

.047924 .016156 .017443 6.000000 

.058635 .025972 .021341 8.000000 

.066683 .036166 .024271 10.000000 

.072499 .046040 .026387 12.000000 

.082446 .078213 .030008 20.000000 

.083760 .103651 .030486 30.000000 

.082544 .120167 .030044 40.000000 

.080800 .132113 .029409 50.000000 

.078901 .141385 .028718 60.000000 

.076964 .148908 .028013 70.000000 

.075051 .155200 .027316 80.000000 

.073201 .160577 .026643 90.000000 

.071436 .165245 .026001 100.000000 

.058254 .191969 .021203 200.000000 

.049950 .204306 .018180 300.000000 

.044567 .212322 .016221 400.000000 

.040596 .217592 .014776 500.000000 

.037535 .221467 .013662 600.000000 

.035074 .224468 .012766 700.000000 

.033035 .226880 .012024 800.000000 

.031308 .228872 .011395 900.000000 

.029820 .230548 .010854 1000.000000 
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Table 3: Convergence of the moments obtained by Chebyshev expansion 
for Re=20, f1=4.368, -r=0.16667, and 9=20° 

M 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 

0.0006 

0.0009 

~ 
:::::-
~-
.5 0.0003 
5 
t:: 

t..tl 0.0000 

N 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 

10 

Mxl (pro 2 a5) Mvf(pro2as) Mzf(pro2a5) 
.083250 .092973 .030300 
.083185 .090297 .030277 
.083521 .081663 .030399 
.083266 .080443 .030306 
.082727 .078275 .030110 
.082753 .078303 .030120 
.082511 .078204 .030032 
.082479 .078191 .030020 
.082456 .078210 .030012 
.082443 .078200 .030007 
.082430 .078211 .030002 
.082421 .078227 .029999 
.082419 .078249 .029998 
.082423 .078266 .029999 
.082427 .078277 .030001 
.082432 .078284 .030003 
.082437 .078289 .030004 
.082441 .078292 .030006 
.082445 .078293 .030008 
.082448 .078293 .030009 
.082451 .078293 .030010 
.082453 .078292 .030010 

20 30 40 50 

Number of polynomials in each direction 

Figure 5: Error in dimensionless yaw moment versus number of 
polynomials for Re=20, -r=0.16667, f1=4.368, and 9=20° 
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Table 4: Convergence of the moments obtained by Chebyshev expansion 
for Re=lOOO, T)=4.368, -r=O.l6667, and 0=20° 

M N Mxl(pm2a~ Mvf(pm2a1__ M__z/Jp_m 2 a1__ 
6 6 .020448 .223030 .007442 
8 8 .020444 .223027 .007441 

10 10 .020385 .222583 .007420 
12 12 .019625 .221657 .007143 
14 14 .019454 .221570 .007081 
16 16 .019468 .221582 .007086 
18 18 .019518 .221614 .007104 
20 20 .019554 .221639 .007117 
22 22 .019781 .221774 .007200 
24 24 .020157 .222004 .007336 
26 26 .020426 .222218 .007434 
28 28 .021206 .222864 .007718 
30 30 .023099 .224514 .008407 
32 32 .027432 .227860 .009984 
34 34 .029481 .229827 .010730 
36 36 .029680 .230521 .010803 
38 38 .029789 .230708 .010842 
40 40 .029830 .230729 .010857 
42 42 .029836 .230726 .010859 
44 44 .029837 .230723 .010860 
46 46 .029838 .230720 .010860 
48 48 .029838 .230717 .010860 

0.016 
0.014 

~ 0.012 
N! 0.010 
~ 0.008 
~ ... 0.006 
.5 0.004 
j 0.002 

0.000 

1 i l ···········r····················; .. ··················T··· 
···················i·····················r····················i·····················i·········· 

~ : I 
-0.002 

0 10 20 30 40 50 

Number of polynomials in each direction 

Figure 6: Error in dimensionless pitch moment versus number of 
polynomials for Re = 20, -r = 0.16667, Tl = 4.368, and 0 = 20° 
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0.000 . . . 
··················-:-······----··········r·····-··············l···-----·--
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Fipre 7: Error in dimensionless yaw moment versus number of 
polynomials for Re = 1000, t = 0.16667, 11 = 4.368, and a= 20• 
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Figure 8: Error in dimensionless pitch moment versus number of 
polynomials for Re = 1000, t = 0.16667, 11 = 4.368, and a = 20• 

We also note from figures 7 and 8 that with relatively low number of 
polynomials, i.e. 15 to 25 in each direction, the calculated moments do not 
change significantly with the number of polynomials, yet they do not 
converge to the values given by eigenfunction expansion. We believe this is 

167 



M.Selmi 

due to the increase in complexity of the solution especially near the corners 
as the Reynolds number increases, and only a big change in the number of 
polynomials produces a significant change in the moments. Nevertheless, this 
method is quite competitive compared to the 3D-spectral code written by 
Herbert & Li (1987, 1990) since in this approach we are only solving for one 
Fourier component of one flow quantity in two dimensions and /not for a total 
of 4 quantities in three dimensions. The CPU time and memory allocation 
are significantly reduced. We also note from the results presented here that 
certain components of the moments converge faster than others. This has to 
do with the degree of complexity of the velocity at the plane the moments are 
heavily dependent on. 

SUMl\1ARY 

We have presented an alternative approach to calculating the moments 
caused by a viscous fluid inside a spinning and coning cylinder. This 
approach solves the sixth-order partial differential equation describing the 
axial velocity by spectral collocation. This equation is based on the linearized 
Navier-Stokes equations and was solved by eigenfunction expansion by Selmi 
et al. (1992). The eigenfunction approach requires solving a complicated 
complex eigenvalue problem and accounting for all eigenvalues, which is 
crucial to the convergence of the method, is a difficult task. 

This approach expands the deviation of the axial velocity from that 
corresponding to an infinitely long cylinder in a triple series in Fourier 
functions in the azimuthal direction and Chebyshev polynomials in the radial 
and axial directions. Since only the fun~amental component in the azimuthal 
direction is needed for the evaluation cif moments, the expansion is reduced 
to a double series in Chebyshev polynomials in the radial and axial 
directions. The expansion coefficients are determined by solving a linear 
system of equations in the least square sense. The linear system is obtained 
by satisfying the sixth-order partial differential equation and its boundary 
conditions at Gauss-Radau points. These points were selected for 
convenience and Gauss or Gauss-Lobatto points could have been equally 
utilized. 

We have found out that satisfying the governing equation on the 
boundaries except at the corners speeds up convergence. This in part and the 
number of boundary conditions that need to be satisfied explicitly prevented 
us from clustering the collocation points in such a way as to obtain the same 
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number of equations as the number of unknown expansion coefficients and 
this leads us to solve the system in the least square sense which has worked 
quite well. The method is computationally competitive as compared to the 3-
D spectral code of Herbert & Li (1987, 1990) and easy to use as compared to 
the eigenfunction expansion of Selmi et a/. (1992). Typical runs with 38 x 

38 polynomials takes 157 seconds CPU time on a Cray Y -MP8/864. 
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