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ABSTRACT 

1976 Diffie and Hellman introduced the concept of public-key cryptography 
and in 1978, McEliece introduced the first public-key cryptosystem based 
on error correcting codes. Since that time, several methods have been 
proposed to use error correcting codes for cryptography either directly or 
indirectly. In this work we propose the use of cascaded codes in McEliece 
algorithm where cascading here means that one code is used after the 
other. Two or more codes are used in cascade to get high error correcting 
capabilities even with moderate length codes. This makes the system more 
useful over noisy channels. The structure of cascaded codes is in itself a 
good way to secure the data. Binary block codes are only considered in this 
work although other types of codes can be used. We discuss two different 
encryption schemes where normal and Tensor products of matrices are 
used to form the codes. The proposed schemes are more adequate for 
block encryption. Decoding is also performed in cascade to make use of the 
existing fast decoding algorithms available for each of the used codes. 
Therefore, the decryption process will be fast too compared with other 
schemes based on number theory. The selection of proper code parameters 
is discussed and the probability of correct recovery of transmitted messages 
is also found. 

INTRODUCTION 

We usually use error correcting codes in digital communication to detect and 
to correct transmission errors. Such codes are publicly known and normally they do 
not offer cryptographic protection. If the plaintext is encoded using an error 
correcting code, this will be considered as a further authentication of the 
transmitted message [1]. However, McEliece [2] proposed a public-key 
cryptosystem based on error correcting codes. Other works also suggest the use of 
error correcting codes for encryption and authentication such as [3] and [ 4]. In the 
present work, we propose the use of cascaded codes instead of Goppa codes 
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originally used in McEliece algorithm to provide both protection and security of 
information. This method is more adequate for block encryption and the code 
parameters can be selected to get lengths similar to those used in data encryption 
standard (DES) [5] for example. The paper is organized as follows; the following 
two sections give a brief review of the concepts of public-key cryptography and the 
properties of linear block codes which are only considered in this work although 
other codes can be used. Then, the details of McEliece public-key cryptosystem 
and the proposed two encryption schemes are covered in three sections. The 
code selection criteria and the system performance represent the third part of this 
paper. We conclude our work by comments on the advantages and disadvantages 
of the proposed schemes and their performance. 

PUBLIC KEY ENCRYPTION 

In public-key cryptosystem many people can encrypt messages in such a way 
that only one user can get them. Public-key cryptography makes secure 
communications possible even in communication networks with thousands of users 
[ 6, 7]. This method is symmetric since it allows secret communication in both 
directions. Fig. I shows a typical public key cryptosystem. Encryption employs an 
algorithm E and an encryption key Ke. Decryption process employs the algorithm 
D and the decryption key Kct. Both algorithms, E and D, are public. The decryption 
process is the inverse of the encryption process, so that the keys are related. They 
are derived from the same source (seed) Ks. Two public algorithms Fe and F d are 
used to calculate the keys as shown in Fig. I. Only the intended receiver of the 
information should be able to decrypt it, and the decryption key Kd is kept secret 
by the receiver. The other key, Ke, is made public, enabling any one to encrypt 
data for one receiver to whom the key belongs. To keep the secret, the receiver must 
himself carry out the calculations Fe and F d to create both keys, of which he keeps 
Kct strictly for his own use. 

LINEAR BLOCK CODES 

In this work we restrict ourselves to linear binary block codes. A linear block 
code is denoted generally by C(n,k,d) where n is the codeword length, k is the 
dimension of the code (or the number of information symbols), and d is its 
minimum distance. The codewords of a code C represent a subspace of the vector 
space of n-tuple over GF(2). All codewords are generated using a generator 
matrix G of dimension n * k. On the other hand, any n-tuple vector f. is a 
codeword of the code generated by G if £HT = Q ; where H is an (n-k) * n matrix 
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called the parity check matrix and Q is a zero vector of length n-k. called the parity 
check matrix and Q IS a zero vector of length n-k. 

Ke 1:1 Ks 

Public Key ~j_ 
Fd 

..___ 

Private 
Kd Key 

Y. ~= E K ( Y. ) u=D (v) 
e - K -

---+ E 0 r-- d 

Fig.l: Public-key cryptography 

As a result, GHT = 0, where 0 is zero matrix of dimension k * (n-k). The code is 
said to be systematic if the first k symbols of its codewords are the information 
symbols and the last n-k symbols are the redundant ones. This requires that the G 
matrix be in the form G=[IkiA], where A is an arbitrary matrix of size k * (n-k) 
and Ik is the identity matrix of size k * k. Similarly, the parity check matrix H can 
be written in the form H = [ATIIn-kl The error correcting capability ofthe code 

C(n,k) is t=L ( d - 1) I 2 J where L x J denotes the largest integer less or equal to x. 

However, a block code with random error correcting capability t can correct many 
error patterns of t+ 1 or more errors. Several decoding algorithms exist for linear 
block codes, some of them use the algebraic structure ofthe code, while others make 
use of the channel information to perform probabilistic decoding. More can be 
found about linear codes in [8,9]. 

MCELIECE PUBLIC-KEY ALGORITHM 

Consider a binary message m of length k. lfthis message is encoded using 
the generator matrix G of the code C, the result is a codeword f of length n. In 
order to make it difficult for cryptanalyst to discover which code is being used, the 
matrix G is scrambled using a nonsingular matrix S of size k * k (this is equivalent 
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to combining the rows of G linearly), then the columns of the G matrix are 
rearranged using the permutation matrix P of size (n * n). Therefore, the generator 
matrix that the transmitter of the message actually uses is S G P, or G'. To 
encrypt a message m, the transmitter encodes his data using G' and in addition 
he adds (modulo-2 addition) a certain pattern of error that only the receiver knows 
how to remove it through the use of a proper decoding algorithm. The added error 
pattern ~ is a locally generated random sequence of length n and weight w!f(i)::;: 
t, with equality only for error-free channels. So in brief; 

Private key 

Public key 

Cryptogram 

G, P and S. 

G' and the code error correcting capability t. 

~=m G' + ~· 

Since the receiver knows the S and P matrices, the required vector m can be 
detennined as shown bellow; 

~ p-1 = m G' p-1 + ~ p-1 

m' G+ ~· 

m' G is a codeword of the code C and ~' has the same weight as ~ , assuming no 
more errors are introduced by the channel, so ~·is still within the error correcting 
capability of the code C. Using an appropriate decoding algorithm, we can find 
the corresponding error pattern~·, thence m can be found, where: 

m=m's-l 

In the original algoritlm1, McEliece has used Goppa code because of its large 
value of t. Goppa code is a special case of alternant codes and can also be derived 
from BCH code [8]. McEliece algorithm is useful over error-free channels that is 
not the case of most real communication channels. To protect the information 
against channel error, the weight of the error vector deliberately added at the 
transmitter should be less than the error-correcting capability of the code. Fig.2 
shows an additive white gaussian noise channel model assuming McEliece public­
key cryptosystem is used. The errors introduced by the channel are independent and 
are denoted by the error vector ~". The transmitted message Y. will be received 
correctly if wH(~) + wff(~")::;: f. 
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Fig.2: A WGN communication channel with public-key cryptosystem 

ENCRYPTION USING NORMAL PRODUCT 

In this scheme, two codes C1(n1,k1,d1) and C2(n2,k2>d2) are used one 
after the other such that the codewords of C 1 represents a subset of the 
information vectors of the second code c2. This means that k2=n1. We refer to this 
code structure as the iterated code. The iterated code Ci has length n2 and 
dimension k1. The generator matrix of the iterated code will be the normal product 
of the two generator matrices, i.e., Gi = G1G2. The minimum distance ofthe 
resultant code is still d2. At the receiving end, the received block will be decoded 
first using the rules of c2 followed by the rules of C 1. The decoding is successful 
if no errors are introduced by the channel or the originally added error vector g_ is 
of weight we that is less than t and the number of channel errors is less than t-w e· 

The cryptogram still have the same form as before; 

v = m G' + g_ 

where G'= SGiP= SG1G2P 

and in this case the scrambling matrix has dimension k1 * k1 and the permutation 
matrix will be of dimension n2 * n2 and g_ is a randomly generated vector of 
length n2 and of weight wH(~) s;; t2. Only G' is made public and the other 
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matrices are kept secret. At the receiving end these secret matrices together with 
decoding process are used to decrypt the received message. In brief; 

Public key : G', ~d error correcting capability t2. 

Private key : Gl> G2, S, and P. 

Cryptogram : m S G1G2 P + ~. 

The decoding can be performed in two steps starting by decoding the nz-bit 
block using decoding rules of Cz, then applying the decoding rules of C 1 on the 
resultant n 1-bit block. Due to the permutation process we assume that the remaining 
errors, either due to channel or due an inserted or altered text, affect the symbols 
independently. This scheme can be used either for data encryption or for 
authentication. 

In order to find the possible number of keys; we have to consider all possible 
forms and combinations of scrambling, permutation, and generator matrices. This 
number is approximately; 

where !gil is number of possible forms of generator matrix of the code Ci and is 
given by [4]: 

lg;j= kfil {2k; -2j) (2) 
j=O 

This is mathematically true but from the coding point of view few combinations 
would represent real codes. As an example, consider the iterated code consists of 
the Hamming code (7,4,3) as the first code and the BCH code (15,7,5) as the second 
code. The resultant code Ci is an (15,4,5). The codewords of the this code 
represents a subset of the codewords of C2. In this case the possible number of 
encoding rules for purpose of encryption is approximately 2.8x 1 o35 for these two 
small codes. 

In error-free communication channels, the error vector~ used to encrypt the 
message can be identified after the decoding process. Therefore, if this error 
vector contains any information it can be recovered. We can make use of this error 
pattern in a different way. This can be achieved by using ~ as secondary 
message with weight less than t2. Also we can add a secondary message by 
assuming the following structure of a cryptogram: 

(3) 
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where m 1 represents the main or primary message, ~1 is the secondary message 
and it is of length n1 and wff(~ 1 ) ~ tb and ~2 is an error pattern of length n2 and 
w Ji(~2) ~ t 2· The error correcting capability of code C 1 should be large enough to 
make the secondary message of reasonable length. Using the same notation as 
before, we can write equation (3) as; 

where 

This equation can be written in terms of primary and secondary keys as 

.!:=m1Gp+~1Gs+~2 

where 

(4) 

(5) 

The addition of a secondary message requires the use of two different keys. At the 
receiving end, we start by applying the decoding rules of the second code C2 in 
order to get the error pattern ~2 , then the decoding rules of the first code C 1 to get 
the primary message m1 and the secondary information ~1· The secondary 
message is protected using single code c2 while the primary message is protected 
using the two codes. The public key in this case consists of the matrices GP and 
Gs together with t 1 and t2. This will increase the probability for the cryptanalyst to 
find the original codes C1 and C2. Table-1 gives examples of possible code 
combinations that can be used in this scheme. The parameters n,k, and d describe 
the overall resultant code, and R is the overall code rate. In order to satisfy the 
condition k2=n b we get some new codes from known ones using the expurgating 
method [8]. Single parity check code is a good choice to get higher data rate. 
Only one of the two codes used in this case can be a single parity check code since 
its minimum distance is 2. 

Tablel: Examples of Codes for First Scheme 

n1 k1 tl n2 k2 t2 n k t R 

4 3 0 7 4 1 7 3 1 0.428 

7 4 I I5 7 2 15 4 2 0.267 

63 57 I 127 63 3 127 57 10 0.449 

I27 106 2 255 127 4 255 106 22 0.4I6 
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ENCRYPTION USING TENSOR PRODUCT 

In this case we use two codes as before but without restrictions on their lengths 
or dimensions. Permutation is also performed in this case. The plaintext is divided 
into segments each ofk1 symbols or bits. Then, each segment is encoded using the 
first code C 1· k2 codewords of the first code are stored, and they are divided into 
k1 krbit segments such that each segment does not contain more than one bit 
from each codeword of the previous stage. This similar to applying two decoding 
rules on a block of data of k1 rows and k2 columns. The resultant coded text is 
of length n 1 n2 , dimension k 1 k2, and minimum distanced 1 d2 and that is why this 
structure is called product code. As before, the cryptogram will be in the form: 

}::' = m G' + f. 

(6) 

where ® indicates the Tensor (Kronecker) product of matrices [10], S and Pare 
the same as before but with dimension k1k2 * k1k2 and n1n2 * n1n2 receptively. 
The plaintext or the information vector m is of length k1k2. The random error 
pattern f. is of length n 1 n2 and weight w !f{f.) ::; t, where t is the error correcting 
capability ofthe resultant code. So in brief; 

Public key : G', and error correcting capability t 2· 

Private key : Gl> G2o S, and P. 

Cryptogram : ·m S (G1®G2) P + f.. 

We can pcrfonn scrambling and pem1Utation on each code separately in order to 
use smaller matrices. We can write the publicly known matrix in this case as: 

G' = S1G1P1 ® S2G2P2 (7) 

From the properties of Tensor product , the above expression can be written in 
the form: 

(8) 

In this way, we can use smaller scrambling and permutation matrices to get the 
same result as before. In this scheme, the information symbols are arranged in 
blocks of dimension k2*k1. Let !i represent the row information vectors of length 
k1 for i=l,2, .. ,k2. The information symbols are then rearranged in the form of 
vectors J::j of length k2 such that J::j=[xijl where Xij is thejth element ofthe vector 
!i, i=l, .. ,k2 and j=l,2 ... ,k1· Assume that the scrambling matrix Sis the unity 
matrix, the resultant codeword before column permutation will be: 
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(9) 

where L~ indicates vector addition modulo-2, gjj, i=1,2, .. ,kl,j=1,2, .. ,nl, is the 
Ell 

(i,j) entry of the G 1 matrix. This shows how the information symbols are arranged 
in the decoding process. This arrangement is a sort of interleaving and no two 
symbols of the same vector !i exist in the same vector .l} Other interleaving 
methods can also be used. 

As in the case of iterated code, the decoding can be performed in steps 
making use of the decoding procedure of each code separately. The S and P 
matrices together with the generator matrices G 1 and G2 are kept secret. Table-II 
gives examples of some codes which can be used in this scheme. 

Table 2: Examples of Codes for Second Scheme 

nl kl tl n2 k2 t2 n k t R 

4 3 0 7 4 1 28 12 2 0.428 

7 4 1 15 7 2 105 28 7 0.267 

15 7 2 31 16 3 465 112 17 0.241 

15 11 1 31 21 2 465 231 7 0.496 

The choice of codes depends on several factors such as the required data rate, 
channel error rate, and the existence of proper decoding algorithms for each ofthe 
selected codes. In the next section we will discuss some of these factors. 

CODE SELECTION 

We gave examples of possible combinations of codes that can be used in each 
scheme. A proper selection of codes is the one that ensures the security of the 
system. McEliece investigated several attacks against the original system [11]. 
One of this attack is based on selecting k error free elements of the cryptogram ~ 
and to solve a set ofk linear equations to recover the message. lfk components of 
the error vector are zeros and the cryptanalyst succeeded in finding these 
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components, he can recover the information symbols. Since the number of non­
zero elements in £ is at maximum t (the equivalent error correcting capability of 
the code or combination of codes used) the probability of selecting k zero 
elements from £ is 

Pk 
t-1( k ) TI 1--. 
· n-1 1=0 

(10) 

The above equation shows that in order to have a secure system the code 
rate k/n must be as large as possible ( 0 <kin< 1) or the error-correcting capability 
of the code would be large enough to assure low value for Pk· This shows the 
tradeoff between the code error correcting capability and its rate. The above 
selection process requires the check of at least N1 (2n- 2 n-k) n-bit vectors where 
N1 is the number of n-bit error pattern with t or fewer ones and it is equal to 

(11) 

Therefore the average work necessary for this random selection attack will be 
proportional to the number of vectors to be checked. Fig.3 shows the average work 
for different code sets assuming the average of proportionality is unity. Interception 
of a cryptogram ~ will reduce the size of possible cryptograms by at most N1. 

Cryptograms that are close to ~ will be accepted by the receiver with a high 
probability but they are not good choices as they are decoded to the same m. 

The all-zeros information messages represents another source of weakness in 
the proposed schemes. The weight of a cryptogram corresponding to a non-zero 
plaintext or information vector is always greater than or equal to t + 1. Therefore it 
is always possible to differentiate between non-zero and all zeros information 
vectors by finding the weight of the received vector. Ifthe weight is less than or 
equal to t, then the transmitted information vector is the all-zeros vector. So it is 
recommended to avoid the use of all-zeros codeword, or the use of codes of same 
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length but with different dimension. In the above analyses we have considered one 
possible attack on the cryptogram to fmd the private key. These analyses simply 
illustrate the impact of the code parameters on the system security. Other possible 
attacks can be considered to test the system robustness against attacks. This will 
be the subject of a future work. 

180 

·~ 160 - • First Scheme II 

140 - • Second Scheme 

:g- 120 -

~ 100 
II> 
0> 
~ 80 ~ 

- ~ "' 
~ 

~ 
- r:::: 

"' -!!. 
0> 60 0 

Lt) 

- !::. 

-.1 

40 
;; 

~ ·~ - t:: 
of Lt) 

20 

0 

:t .; -

~~ 
t:: 0 -~ -

0 

1 2 3 4 
Code Sets 

Fig. 3: Average work required for random selection attack 
for different code sets 

SYSTEM PERFORMANCE 

Another factors have to be considered in code selection, these are the channel 
error rate and the corresponding probability of unrecoverable error message. In 
what follows we will find the probability of incorrectly received message, i.e., the 
probability of unrecoverable message, in the two proposed schemes. 
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Assume an additive white gaussian noise communication channel and let the 
error rate be Pe· In the first scheme, the received message can be decoded 
correctly and the plaintext can be recovered in general if the number of errors 
introduced by the channel is less than t 2- w H(g_). On the other hand, if the channel 
is noisy and no error vector has deliberately added by the transmitter and the 
transmitted codeword fo ( or 1:o if multiplied by G' rather than G) is received as 
f1· fo and f1 will differ at least in d positions and we can write the probability 
of a decoding error in favor of f1 as; 

(12) 

where I x l indicates the least integer greater than x. This decoding error occurs if 
more than I d/2l+ 1 of the symbols where fo ( 1:o) and f1 ( ~1) differ 
are erroneous. A union bound on decoding error probability results in [ 12]: 

n 

PE ~LWdP(vd Iva) (13) 
d=l 

where fct (!{I) is any word at a distanced from fo ( 1:o), and Wd is the number 
of such words. In fact, Wd is a coefficient of the weight enumerating 
polynomial of the code. In the first scheme, the codewords of the first code 
represents a subset of the codewords of the second code. We cannot find the k1 
information symbols unless d 1 > d2. To get the overall probability of incorrect 
message we can apply equation (12) after changing the code parameters and 
replacing the channel error probability Pe by Pe' which is the bit error probability 
after the first decoding stage. Unfortunately Pe' can only be found for codes whose 
weight enumerator polynomials are known such as the Hamming codes. An 
example of calculating the bit error probability after decoding is given in [12] 

In the second coding scheme, we can follow the same procedure as before to 
find an upper bound for the decoding error probability using the overall code 
parameters n and d, where n = n 1 n2 and d = d 1 d2. On the other hand, if we are 
going to perform the decoding in two steps where we make use of the decoding 
rules for each code, the second decoder will be dependent on the first one. 
Assuming that we receive the cryptogram in the form of n 1 blocks, each of n2 bits. 
If more than t2 errors occur in any of these blocks, the decoder fails to find the 
corresponding plaintext (information bits) actually transmitted and produces another 
codeword which differs from the original one in at least d2 positions. This in turns 
introduces more errors for the second decoder and increases the probability of 
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incorrect decoding. The same is true if the cryptogram is received in forms of n 1-bit 
blocks. If more than t 1 errors occur in any of these blocks, the nearest neighbor 
decoding will produce another codeword which at least at a distance d 1 from the 
transmitted one. Therefore more errors will be added to those already exist in the 
other blocks. This will definitely lead to errors in the information symbols. Let us 
consider the simple case where the plaintext cannot be found if any single bit of 
received cryptosystem is incorrectly decoded. We can write the probability of 
incorrectly received message, i.e., the probability of error PE (assuming that g_=Q) 
as; 

PE Prob. { (at least one of then 1 nz-bit blocks has more than t2 errors) or 
(at least one of the n2 n 1-bit blocks has more than t 1 errors ) } 

PE = pi + P2 -pi · P2 
pi =1-P/'1 
p2 =1-P/'2 

where 

and 

(14) 

(15) 

(16) 

From the above equations it is evident that in order to achieve small error 
probability over noisy channels, long encryption block sizes and large error 
correcting capability codes have to be used. 

As explained in the previous section, the decoding will perform in cascade, 
therefore the two decoding processes will be dependent. The channel error rate will 
be different after the first stage, but due to symbol interleaving in the coding 
process, we assume that the errors affect each symbol independently. The 
scrambling and permutation processes do not change the error correcting capability 
of the code. Equation (14) gives an upper bound on the probability of 
unrecoverable messages. For illustrative purposes only, we compare the 
perfom1ance of the two proposed methods using small block codes since it is not 
possible to deal with usable block codes at very small channel error probabilities. 
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The results help to draw a conclusions based on these results. Fig. 4 shows the case 
where the first set of codes given in the first row of Table-1 is used. Both 
schemes have the same data rate. At high channel error rates i.e., for Pe > 0.1, the 
performance of the ·first scheme is better than the second one. This is because the 
nearest neighbor decoding method introduces at least d errors if more than t errors 
occur as explained before. The second scheme performs better at a bit lower 
channel error rates because of its larger error correcting capability compared with 
the first scheme. Fig.5 shows improvement compared with Fig.4 because long 
codes with larger codes error correcting capabilities are used. 

The above analyses help to select the codes that are adequate to the 
communication channels. For a given error rate or channel error probability, the 
code parameters have to be carefully selected such that the probability of error 
will be within the permissible range. It remains to say that the existence of fast 
decoding algorithm for the code is a decisive selection criterion. 
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CONCLUSION 

McEliece public-key cryptosystem is one of the data encryption techniques 
that do not depend on unsolvable problems from number theory. On the contrary, 
the system is based on the coding theory, and on the fact that the decoding 
problem of a linear block code is an NP-complete. However, McEliece cryptosystem 
has not been widely used due to the size of the key, the structure of the system, and 
the low data rate. Also the use of minimum distance (nearest neighbor) decoding is 
not feasible for large codes. In this work we explain how the McEliece public-key 
algoritlm1 can be used with codes other than Goppa codes. Small codes are 
combined together in a cascaded way to form long codes. The structure of the 
proposed encryption schemes is in itself a good way to protect the information 
from any opponent. This structure also increases the error correcting capability of 
the code so the system can also correct noise errors if the weight of the 
deliberately added error pattern (by the transmitter) is less than the overall error 
correcting capability of the structure. The cryptanalyst faces the problem of 
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decoding a corrupted codeword. If no information is available about the data 
structure, the cryptanalyst is forced to use inefficient decoding process. The large 
number of keys that can be used in the proposed schemes increases the difficulty of 
a successful attack. Even if a successful attack is made and the error pattern used 
to encrypt a particular block is discovered, a similar effort has to be made for each 
subsequent block of the message due to the change of the error pattern or a change 
in the key. The proposed schemes have the advantage of high speed encryption and 
decryption rates compared with the original algorithm as well as other systems 
based on number theory. This is true because fast encoding and decoding 
techniques are available for most of linear block codes especially those of small or 
moderate length. Non-binary codes can be used to get better error correcting 
capability. In this way we can overcome the main drawbacks of the original 
algorithm. Also, the proposed schemes carry with them more properties of error 
correcting codes than the original McEliece algorithm. The codes are chosen 
depending on the channel error rate as well as the required transmission or data rate. 
The trade-off between system security and its error correcting capability is clear. 
Long codes with high data rates are more secure. Meanwhile, high data rate codes 
have small error correcting capability so they cannot be used over noisy channels. 
Binary BCH codes are good candidates for both schemes because of their error 
correcting capability and the existence of fast decoding algorithms. 

REFERENCES 

l. Diffie, W. and M. Hellman, 1979. "Privacy and Authentication: An 
Introduction to Cryptography", Proceedings of IEEE, Vol. 67, No.3, 
pp397-427. 

2. Brickely E. F. and Odlyzko A. M., 1992. Cryptoanalysis, A Survey of 
Recent Results, Chapter 10 in "Contemporary Cryptography, The 
Science of Information Integrity", Sinm1ons G. (editor), New York, 
IEEE Press. 

3. Agnew B., 1990. "Cryptographic Systems Using Redundancy", IEEE 
Trans. Information Theory, Vol. IT-36, No. 1, pp.31-39. 

4. Safavi-Naini R. S. and Seberry J.R., 1991. "Error-Correcting Codes for 
Authentication and Subliminal Channels", IEEE Trans. Information 
Theory, Vol IT-37, No.1, pp.l3-17. 

5. Federal Information Processing Standard (FIPS) Publications 46, 1977. 
"Data Encryption Standard", January 15, pp.l-18. 

80 



Coding for Public-Key Cryptography 

6. Diffie, W. and M. Hellman, 1976. "New Directions in Cryptography", 
IEEE Trans. Inform. Theory, Vol. IT.22, No. 6, pp.644-654. 

7. Diffie, W. 1988. "The First Ten Years of Public-Key Cryptography", 
Proceedings ofiEEE, Vol. 76, No. 5, pp. 560-577. 

8. MacWilliams, F. and Sloane N., 1981. "The Theory of Error Correcting 
Codes", Amsterdam, North Holland Pub., 3rd Printing. 

9. Peterson, W. and E. Weldon, 1972. "Error Correcting Codes", Cambridge, 
MA, MIT Press. 

10. Grham, A., 1981. "Kronecker Products and Matrix Calculus with 
Applications", Chichester, Ellis Horwood Pub. 

11. Adam, C. M. and Meijer H., 1989. "Security-Related Comments 
Regarding McEliece's Public-Key Cryptosystem", IEEE Trans. 
Information Theory, Vol. 35, No.2, pp. 454-455. 

12. Batttail, G., 1989. "Coding for the Gaussian Channel: The Promise of 
Weighted-Output Decoding", International Journal of Satellite 
Communications, Vol. 7, pp 183-192. 

81 


