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ABSTRACT 

This paper outlines the main features of parameter identification in electric power 
systems. A series of recursive parameter identification techniques is presented, this 
containing the generalized - and extended least square techniques, the recursive 
maximum likelihood technique, the stochastic approximation method, and the gradient 
technique, 

These identification techniques are tested using a model of the interconnected power 
system of two areas to illustrate the applicability of discrete parameter identification for 
on-line computer control of power systems. The area control errors are considered as the 
controlled variables (system outputs). The changes in the governor gate position are the 
manipulated variables, and the variations in load are the disturbances. 

To evaluate the performance of the identification technique the integral of the 
error-squares criteria is used. This error is defined as the difference between the actual 
system output and the identified model output. A real time package to simulate the system 
and model of the identification techniques is designed and the performance of the system 
is recorded. PBRS is used as standard test signal during this study. 

243 



Comparison of Recursive Parameter Identification Techniques for Computer Control of 

Power Systems 

1. INTRODUCTION 

Identification techniques are used to estimate the parameters of a mathematical 
model for a dynamical system from measured input-output data. These techniques for 
parameter identification are now a standard tool in power system engineering. The 
availability of models in real time is required, as the different power system processes 
develop. Typical examples of such applications are load frequency control, voltage 
regulation, boiler control, ... etc. The parameters of the mathematical models can be 
estimated in real time by recursive identification algorithms. Recursive means that, at 
any instant t, the algorithm generates a new set of model parameters using the 
available measured data. This new set is a trial to track the operating conditions of the 
physical process. 

The choice of the best identification technique and its characteristics depends, very 
strongly, on the system itself. The study of identification techniques and their 
performance, when applied to solve power system operating and control problems, is 
the first step in the design of that system. The second step is to use the mathematical 
models obtained to help the decision makers. The need for such a two-step approach 
can be seen by comparing the large number of papers with theoretically promising 
techniques with the small number of actual applications. 

In order to choose a suitable identification technique for a given system, it is 
required to have an exact model system with all its nonlinearities at different 
operating conditions, together with the implementation of a set of identification 
techniques. In addition, a performance index of the identifier must be chosen. 
Comparing the performance indices of the identifiers under same standard conditions 
allows the judgement of the most convenient technique. The variance of the error 
between the actual system output and the calculated output based on the identified 
model is herein used as criterion for comparison. 

The literature on recursive identification methods is extensive (1-4). It can even be 
said that the wealth of different methods makes the intended user confused as to 
which of them to choose. The purpose of the present paper is not to suggest new 
methods, even though the class of method to be studied contains algorithms that have 
not previously been discussed. One aim of the paper is, however, to define a class of 
algorithms that have the same convergence properties as their off-line counterparts. 
These off-line methods have been called "prediction error methods" (5, 6). This 
category contains several commonly used methods such as the least squares, 
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maximum likelihood, stochastic approximation, and gradient techniques. 

A general discussion of system identification techniques is first put forward. This is 
followed by an example of real application of system identification, which application 
deals with the problem of load frequency control of interconnected power systems. 
This example has been chosen to display the applicability of system identification 
concepts to electric power system problems. 

2. SYSTEM IDENTIFICATION CONCEPTS 

The term "system identification" applies to techniques for determining a 
mathematical model for a power system's response characteristics by use of 
observations on its behaviour. This mathematical model for a power system has three 
aspects: 

(i) Hypothesized mathematical structure of system equations, 
(ii) Estimation of parameters, 

(iii) Verification of identified model. 

The basic system identification logic to be discussed is the iterative three-step 
procedure indicated in Figure (1). Hypothesizing the mathematical structure is the 
most critical step in system identification. The form of this structure depends mainly 
on the particular problem being considered. One important criterion of a hypothe­
sized structure is that the vector i of the unknown parameters can be estimated 
directly from available observation data. Physical insight is often the best way to 
insure the identifiability of the model. 

Once the mathematical structure has been hypothesized, the next step is to use the 
observations to obtain an estimate for the value of unknown parameters. In this 
paper, different identification techniques are implemented, these are listed below (5, 
6, 7). For more information, reference may be made to Appendix. 

(i) Generalized least square technique (GLS), 
(ii) Extended least square technique (ELS), 

(iii) Recursive maximum likelihood technique (RML), 
(iv) Stochastic approximation technique (SA), 
(v) Gradient technique (GT). 
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~esti?g the validity of the identified model is almost as important as the actual 
estimatiOn. Performance evaluation is used to judge the validity of the model. The 
performance index (PI) is defined as the variance of error between actual output and 
calculated output using identified parameters. 

(1) 

in which: 
t time index 
~ 

Yi model output at instant i 
Yi actual system output at instant i 

A fundamental limitation of the system identification concept is the fact that 
sufficient time must pass before enough observations are available to perform the 
identification. If the system undergoes a major step change at time t0 , the detection 
logic will be affected by such changes and indicate that the previously identified model 
is no longer valid. Then a finite time dt must pass before a successful identification of 
new system is possible. The length of this (dt) can be reduced by adding more 
measuring devices. 

3. PROBLEM FORMULATION 

Figure (2) shows a general block diagram representing a system with input u(k) and 
output y(k). The identifier is to estimate values for model parameters recursively 
using real input-output data. The system may be represented by a linear discrete 
model as follows: 

y(k) = -a1y(k-1)-a2y(k-2) ........ -apy(k-p) 
+b1u(k-l)+b2u(k-2) ........ +b,u(k-r) (2) 
+c1e(k-l)+~e(k-2) ........ +cse(k-s), 

in which the noise e(k) are a sequence of white random variable with zero mean. The 
parameters ai, bi, ci may or may not vary with k(time ). Thus time-varying systems may 
be modelled by the above equation with time-varying parameters. In this case, for 
specified values of the parameters an approximate model can represent the system 
around certain operating conditions. Estimated values of parameters may be varied to 
track the change in operating conditions. 
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Fig. 1: Basic System Identification Logic. 

4. LOAD FREQUENCY CONTROL 

In this section, modelling and identification of interconnected power systems are 
illustrated (8). A model of two areas is simulated and the dynamics of such system are 
investigated." The study of such a system arises from the fact that the loads on each 
power area are subjected to random changes (8,9). Adaptive controllers may be so 
designed as to use different identification techniques. Comparison of such techniques 
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as applied to that system is herein presented. 

The objective of load frequency control is to exert control of frequency and 
simultaneously of power exchange via tie-lines. The frequency error (df), and the 
increments in the real tie-line power (dPtie), are measured. The weighted sum of df 
and dptie is fed back to the controller as an area control error (ACE). The controller 
manipulates the steam valve opening of the turbine to change the generated power. A 
block diagram of this two area power system is shown in Figure (3). The average load 
change in area one was selected to be 0.3 pu; superimposed random load variations 
may be added. The load in the other area was left unchanged so as to see the effect of 
one disturbed area on both. 

4.1 Response of Interconnected System: 

Responses of dptie• df1 and df2 to a step change in dpd1 are exhibited in Figure (4). 
Responses are plotted under open loop condition in which no change in steam valve 
opening occurs, i.e. 
Pel= Pc2 = 0 (3) 

Results indicate the expected response that the load change dp1.affects df1 more 
than df2. Changes in df2 are due to variation in tie-line power dptie· Should dpd1 
contain random load variations, the new response would be as that indicated in 
Figure (5). 

On testing the integral control loop, the disturbance was found to be the same as 
that shown in Figure (5). Figure (6) displays the response of dpdh dptie• dft. df2, dpc1 
and dpc2 for the closed loop system under integral control. It can be seen that dpc1 is 
almost the filtered signal of dpdi· 

4.2 Results of Comparative Study: 

The following tests were implemented to compare the identification techniques. 
The first group of tests includes the development of best model structure and best 
sampling period. In the second group, each technique is tested to show the effect of 
identification parameters on system performance. The third group of results 
comprises the development of a discrete model of the complete system. In order to 
obtain the best model, a PRBS (pseudo random binary sequence) is connected to 
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dpch Figure (7). The identifier and the performance evaluator were also used. In 
such case 

(4) 

To test the model order, the sampling period was fixed at 0.1 s (9). The model order 
was varied from one to seven and the corresponding performance indices (PI) were 
plotted, Figure (8) (GLS being used). From test results, it can be concluded that a 
third order model is appropriate since higher order models indicate insignificant 
reduction in the PI. To choose the best sampling period the GLS technique was 
used with third order model. Different values for sampling period were selected. It 
is clear that the total time cannot be used as a base of comparison. Thus, 200 
samples in each case were considered, and the total time of simulation had to be 
changed in correspondence with the change of sampling period. Relevant results 
are plotted in Figure (9) for sampling periods of 0.05, 0.1, 0.2, 0.3 s. A sampling 
period of 0.1 s shows good results. 
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Fig. 2: Identification Scheme. 
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Fig. 3: Block Diagram of Power Frequency Control of a Two Area System. 

In the third group of analyses, the effect of the forgetting factor on each technique is 
studied. The equal weights case is used as basis for comparison. A third order 
model with 0.1 s sampling period is selected in all cases. Figure (10) displays the PI 
against time for GLS. The ELS was also tested, relevant results are plotted in 
Figure (11). The above results indicate that the ELS leads to generally, greater 
improvement in the PI than the GLS. Repeating the test for RML gave similar 
results, same conclusions being drawn, Figure (12). Using the SA and GT as base of 
weighting factor brought in no significant effect, Figures (13) & (14). The GLS 
technique with equal weights was used to generate a discrete mode for this multi 
input-multi output system, Figure (15). 
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Fig. 4: Response of the Power System to a Step Change in dpdl. 
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Fig. 7: Schematic Diagram of the Model used for the Comparison Study of the 
Identification Techniques. 
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Fig. 14: Effect of the Forgetting Factor of the GT on the PI of the Identifier. 
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Fig. 15: Discrete Model of the Power System. 
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5. CONCLUSION 

In this paper a general class of recursive parameter identification techniques is 
considered and tested. The class of methods considered contains five well-known 
techniques, the construction of which is fairly straightforward and easily implemented 
with the use of microprocessors. 

Test results are shown to establish the application of identification techniques for 
load frequency control of interconnected power systems. The control area is 
represented by a third order discrete model with time varying parameters. Model 
parameters are identified every sampling period, thus verifying the ability of the 
model to track the operating conditions dynamically. 

A comparative study of different techniques is herein presented and a predefined 
performance index is evaluated to measure the soundness of used technique. 
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APPENDIX 

(i) Generalized least square technique (GLS): 

The system to be identified is assumed to have the general form: 

y(t)=-A(q-1)y(t-1)+ B(q-1)u(t-k-1)+C(q-1)e(t) 
where 

u(t) and y(t) are the input and output of the system 

e(t) is the disturbance, which is a sequence of independent random variable 
A, B, and C are polynominals in q-1• 

k is the pure time delay assumed in the model 

A(q-1)=ao+atq-1+a2q-2 

B(q-t)=bo+btq-t+~q-2 

C(q-t)=co+ctq-t+~q-2 

where q-1 is the shift operator which is defined as 

q-1y(t) = y(t-1), tis time index 

For GLS technique the identified model is given by 

y(t) = -A(q-1)y(t-1) + B(q-:-:::1)u(t-k-1) 

This model may be written in the form 

y(t) = !!(t).~ 

where 

y(t) is the model output, 

Q(t) = (a~o a2 .... ; b~o b2 .... ,) 

tl(t) = ( -y(t-1), y(t-2) .... ; u(t-k-1), u(t-k-2) .... ) 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.S) 

(A.9) 

Measurements are obtained every sampling period and used to estimate ~at instant t. The GLS technique 
minimizes the sum of error squares (J) given by 

J = I' w(i) . (y(i) - y(i) )2 

where 

y(i) is the actual system output 

w(i) is the weighting factor 

(A.10) 

The sequencia! algorithm of the estimator may be defined by the following set of equations: 

Q(t) = ~(t-1) + ~(t)(y(t)-tl(t~(t-1)) 
~(t) = .f(t-1)!J(t)(!!(t)!,>(t-1)!:!(t)+l/w(t) )-1 

~(t) = ( I- ~(t)!!(t)) ~(t-1) 
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w(t) can be adjusted by the user to any of the following options: 

w(t) = ( ~ (A.14) 

l t/a _,a> 1 

r(t) is the covariance matrix of the estimation error, and K(t) is the correctio vector. Their initial values 

are assumed to be 

' r(o) = 10S.(1), and !!(0) = 10--•. (1, 1, ..... ) (A.15) 

The forgetting factor (a) may be chosen under user requirements. 

(ii) 'lbe extended least squares (ELS) 

The estimator assumes an extended prediction model of the form 

y(t) = H<t) . i<t> (A.16) 

in which: 
/ 

--~(t)=(y(t-1) .... ;u(t-k-1) .... ;e(t-1) .... ) (A.17) 

In such case the number of estimated parameters is increased. These parameters can be obtained 

recursively as such: 

/'. A 

~t) = ~(t-1)+~£(t)~(t)e(t) 

~<t>=r<t>t!(t)/(1 +"'<tH!!<t>r<tm<t)-1} > / 

r<t>=<1t{1-"'(t)}) p(t-1)- <r<t-1>!:!<t>H<t>~<t-1)}/ 

{1/"'(t)-1+ !:!<t)r<t-1>!!<tn > -
e(t)=y(t)- y(t) 

( lit for equal weights 
~A-(t) = (a, 0 <a< 1 for exponential weights 

Same initial conditions are used as in GLS. 

(iii) Recnrsive maxinlum 6ke6hood techniqne (RML): 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

In the RML technique the data vector tJ( t) is introduced to a filter before being used by the identifier. 

The output of the filter is denoted by± (t). The filter is defined as 

(A.23) 
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in whichfrepresents the sensitivity derivative of the prediction error w.r.t. the parameters. The estimator 

equations are the same as equations (A.12 - A.16) except that ti(t) is replaced by± (t). 

(iv) 1be stochastic approximation technique (SA): 

SA technique may be considered as recursive estimation method updated by appropriately weighted 

arbitrary chosen error correction term. The identified model may take the same form as (A.ll). The 
identification algorithm can be defined by: 

~(t)=~(t-1)+ ~(t)!!(t)~(t)-~(t)~(t-1] 
in which: 

f 
(I) T(t) , T(t) = a I toe: , a > 0, 0.5 < ex: < 1 

f(t) = -

~(t-1)-p(t-1)!!(t) l1 + IJ(t)!'(t-1)!:!(t1Ij(t)!(t-1) 
starting values being assumed equal to: 

" ~(0) = 1()5 (I) , and ~(0) = 0 

(v) 1be gradient technique: 

(A.24) 

(A.25) 

(A.26) 

The system to be identified is assumed to have the form of equation (A.1). The technique is based on 
minimizing some measures of error, which is defined by: 

J(t) = (1/2).e(t)2 

The identification algori~hm takes the following form: 

~(t)=~(t-1)+ R(t-1)!!(t-1)e(t-1) 
in which 

R(t)=diag~1(t),X2(t), ..... Xp(tj]IF(t) 

F(t) = ~ ~(t)H;(t) 

~(t)= M;', M < 1 orX;(t) = 1 
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(A.28) 

(A.29) 

(A.30) 

(A.31) 


