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ABSTRACT 

The thermal instability of a vicsious liquid film flowing down an inclined plane 
heated from below is studied analytically. The effects of Biot number at the free 
surface, the inclination, the Prandtl number and the Reynolds number on instability 
for· the longitudinal and traverse rolls have shown that the longitudinal rolls have 
priority of occurence over the transverse rolls. For small Biot numbers with Pr = 7 
and 100, the thermal entry region is more unstable than the fully developed region, 
but for large Biot numbers this situation is reversed. 

INTRODUCTION 

The thermal instability of a viscous liquid film flowing down an inclined plane 
and heated from below is the main concern in this study. Benjamin [1] was one 
of the earlier investigators who studied the hydrodynamic stability offree-surface 
flow down a vertical plane. For liquid layer flowing down an inclined plate, Yih 
[2] analytically solved the stability problem by including the surface tension effects 
and compared his results with those for confined plane Poiseulle flow ana showed 
that free-surface flow is more suitable than the Poiseuille flow. Bankoff [3] 
extended the Yih-Benjamin analysis of hydrodynamic stability by taking into 
account the effects of evaporation or condensation. Wassan et al. [4] considered 
the instability of laminar flow of water over heated and cooled flat plates. The 
numerical results obtained from the solution of the modified Orr-Sommerfeld 
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equation, which included variation of viscosity with temperature, demonstrated 
that heating of the profiles, whereas cooling results in destabilizing effects. That 
is, increasing the wall temperature from 60 to 150°F, increases the critical 
Reynolds number from 151 to 14800. This conclusion is opposite to that for 
corresponding gas flow, because viscosity of liquids decreases with temperature, 
whereas viscosity of gases increases with temperature. 

For fully developed laminar flow between two· isothermal infinite horizontal 

plates, Nakayama et al. [5) studied theoritically the convective instability 
associated with longitudinal vortex rolls under the situations o€ a constant axial 
temperature gradient with different or identical wall temperatures. The 
theoritical results when compared with the experimental results of Akiyama et 
al. [6), in which the onset of secondary flow was determined by a direct flow.­
visualiation technique using cigarette smoke, were found in good agreement. 
Later, Hwang and Cheng [7] analyzed the stability of longitudinal rolls for fully 

developed flow heated from below by including axial heat conduction. The graphs 
of their results for the entrance region, indicate that the critical Rayleigh number 
characterizing the onset of instability increases as Prandtl number increases and 
reaches the limiting value R. = 1708 in the fully developed region for all values 
of Prandtl numbers regardless of the presence of forced flow. 

The thermal instability of the above problem in the thermal boundary layer 
region was examined experimentally in air by Kamotani and Ostrach [8). The 
critical Rayleigh number determined in this study was found to be almost an 
order of magnitude higher than the theoritical results by Hwang and Cheng. 
However, this discripancy between the experimental and the actual result of the 
above channel flow problem was also observed between the experimental [9) 

and theoritical [10-13) results concerning longitudinal vortex disturbances of 
natural convection flow on inclined surfaces. The difference, as interpreted later 
by Cheng and Wu, was attributed to infinitesimal disturbances in theory and 
measurable disturbances in the experiment. 

The exact analysis of the Graetz problem with axial conduction being included, 
were described by Hsu [14] and Wu et al. [15). They stressed that for low Peclet 
number uniform fluid temperature at the inlet section is no longer valid because 
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the heat conducted upstream at x = 0 causes a transverse variation on the fluid 
temperature at x ::::; 0. Therefore, they considered the fluid temperature to be 
uniform upstream at x = - oo. These interesting results, encouraged Cheng and 
Wu [16] to carry out the stability analysis for the above Graetz problem and to 
investigate the effects of axial heat conduction and the transverse variations of 
the fluid temperature at x ::::; 0 on the onset of instability for longitudinal and 
transverse vortex rolls. They found that for the case of typical upstream fluid 
temperature and upper plate temperature, the increasing Peclet number has a 
stabilizing effect on flow in the entrance region and that transverse rolls are 
dominant over the longitudinal vortex rolls for Re < 1 and P r ~ 1. They also based 
on the assumption that the fluid temperature is uniform at x = 0, and found that 
both results were in good agreement for Pe~ SO except the regions near the inlet 
section x 0, in which Rayleigh number based on the earlier work becomes 
infinite. 

Figure 1: Flow of a Viscous Liquid Film under the Influence of Gravity Over 
Heated Plane. 

The purpose of the present study is to investigate the thermal instability of a 
vascous liquid film flow a heated inclined plane for the case where there are 
longitudinal and transverse vortex distubances. 
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ANALYSIS 

Consider a film of viscous liquid flowing down along an inclined flat plate as 
shown in Figure 1. It is assumed that the fluid enters the upper end of the surface 
_at constant temperature T0 , is subjected to a constant positve heat flux, qo from 
the inclined surface and exchanges heat by convection to or from the surroundings 
at a specified temperature T ,.2• The fluid is assumed to be in compressible, 
laminar, Newtonian, and have constant physical properties except for the density 
which appears in the body forces (i.e., Boussinesq approximation). Viscous 
dissipation, work of compression and radiation are neglected. 

The purpose of this study is the determination of the conditions at which the 
fluid becomes thermally unstable. The base flow and the disturbance analysis 
needed for this purpose are developed as described below. 

Base Flow Analysis 

The governing equations of motion and energy for the thermal entrance region 
problem are written in the dimensioless form as: 

x - momentum: 

ae uax 

d 2u 
dy2 

+ 2 sin o = 0 in 0 < y < 1 

in 0 < y < 1, X > 0 

subject to the boundary conditions : 

u = 0 at y = 0, du = 0 y = 1 dy 

a a -1 0, ao + HO 0 y = 1 = y = == ay ay 

e = eo X = o. y > 0 
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where, H is the Biot number at the upper surface. Here, in the x-momentum 
equation (1a), the bouyancy force is ignored as its magnitude is very small 
compared to the gravity fore~. In the energy equation (2a), the effect of axial 
backward cinduction, discussed in references (14-15] for the case ofliquid metals, 
is not included because the present analysis is concerned with liquids of high 
Prandtl numbers. The solution for u(y) from equation (1) is: 

u~y> = u <Y> = y(2 - y) 
s1n cS v (3) 

where uv(Y) is the dimensionless velocity of the fluid at the vertical position. 

To solve for 0, a superposed solution is constructed as: 

(4) 

where, ofd(y) is the dimensionless temperature profile in the fully developed 
region given as : 

. 1 
e (y) = (1 + - - y) fd H (5) 

The solution for the excess temperature Oe(x,y) in the thermally developing 

region is constructed as: 

N 
Oe(x,y) = I Amem(y)exp(-a!x/sin 6) ~) 

m=l 

where the summation is taken over all the eigenvalues and Om(y) are the 

eigenfunctions of the following eigenvalue system : 

ct2e 
+ 28 2 m y(l - y/2)9 (y) 0 in 0 < < 1 (7a) = y 

dy2 m m 

dam 
= 0 at 0 (7b) dy y = 

d8 m + H8 0 at 1 (7c) dy = y = m 
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The exact analytical solution of this eigenvalue problem could not be found 
in the literature; but it could be solved by purely numerical methods [ 1 7 -18]. A 
similar equation subject to boundary conditions of the first kind has been solved 
both by the Galerkin method and numerically. It has also been shown that the 
solution by the Galerkin method is highly accurate (19). Therefore, we prefer to 
solve the above eigenvalue problem (7) by the Galerkin method. The function 
6ni(y) is constructed in a series of orthogonal functions that satisfy its boundary 
conditions (7b,c) as 

~ (rn) 6m(y) = L a. ~.(y), 
i=l . 1 1 

~i(y) =cos ~iy (8a) 

where f.L/ s are the positive roots of the equation 

~ sin Jl - II cos Jl = 0 (8b) 

The orthogonality condition for the functions <Pi(y) is established as : 

1 

I ~. (y)t .(y)dy = ~ [1 + 2 H 2l o .. : oiJ' tfi (8c) 
1 J Jl • + H !j lJ 

0 1 

where 8ii is the Kroneker Delta. When equation (8a) is introduced into equation 
(7a) and the orthogonality condition (8c) is applied, the following infinite set of 
linear homogeneous equations are obtained for the coefficients ai<ml's 

N 
r a<

1
.m) [I

1
(J',i) + a 2 r ( · 1)] o 

L ~rn 2 J' = i=1 
(9a) 

(i = 1,2, ... , j = 1,2, ... ) 

where: 

1 

= I (9b) 

0 
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1 

= I 2y(l- yj2)t.(y)¢.(y)dy 
l. J 

(9c) 

0 

The solution of (7a) is possible if and only if the determinant of the coefficient 
of at's vanishes. This requirement leads to the following secular equation for 
the determination of the eigenvalues, {3m2 's 

(10) 

(i = 1,2, ... , N; j = 1,2, ... N) 

Hence, the system (9a), for every evaluated as a rood, contains a set of N-1 
linearly independent equations for ai<ml' s which may be solved only in term of 

one of them, say ai(m)" Then equations (9a) yields the followingequations for the 

determination of the coefficients, c ~ m ) = 
l. 

(m) a. 
1 

(i = 2,3, ... , N, J = 2, 3, ... , N) 

the approximate eigenfunctions 6m(Y) become : 

a (y) = a(m) 
m · 1 

N 

I 
i=1 

c~m) cos ~.y,with c(rn) = 1 
1 .l 1 

Now, by substituting equation (12) into (6), we obtain 8e(x,y) as: 

N 
e (x,y)= I 

e i=1 
A* m [ 

N 1 -8
2
xjsin 6 r c~ m) cos ~. y e m . 

i=l l. l. 

with A* = a(m) • A 
m 1 m 
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The constants Am·'s are determined by satisfying the, boundary conditions (2c) 
since the finite set {cos ,us} satisfies the necessary regularity conditions, Am· can 
he determined by the application of an extension of the W oierstrass theorem. 
Equation (13) is multiplied by 6n(y) and integrated over 0 ::;:::; y ::;:::; 1, 

N 
L A* I(m,n) :.= L*(n), j = 1,2, •.• , N (14) 

m=l m 

where the integrals are defined as: 

I(m,n>=.J
1[r c~m>cos~.~[r c~"> 

i=l l. l. i=l l. 
0 ' 

(15a) cos 

1 

L*(n)= J [a
0

-(1 

0 

Since C/ml's are previously determined, equations (14) represent a 
nonhomogeneous system of N equations in N unknows, Am•• which has a unique 
solution. The integrals l(m,n) and L*(n) are integrated analytically. Then the 
solution fqr the dimensionless base flow temperature is given as:· 

1 N 
a(x,y) = (1 + - - y) + l A* H 

m=1 m 

[Jl c~m) ] -6~x/sin 6 
cos ~.y e (16) l 1 

Stability Analysis 

To derive the perturbation equations needed for the analysis of stability, small 
quantities on the velocity components, pressure and temperature are defined as: 

U=.U(Y)+u', .V=v', W=w', P=p', T=T(X,Y)+T' (17) 
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where quantities with prime denote the small perturbations. Introducing these 
variables into the conservation equations of mass, momentum and energy using 
the Boussinesq approximation and subtracting out the basic flow equations, the 
resulting perturbation equations, after neglecting nonlinear terms, are expressed 
inthe dimensionless form as: 

" ,., " 
~ +·dV + dW = O 
ax• ay az (16) 

au + Re a~ duv "' 
aT UV ax• sin o + Re dy v sin o 

" a sin 6 (17a) 

" 
,.. ,.. 

av av aP 2" " 
+ Re uv ax• sin 6 = + IJ v + a cos 6 (17b) 

a-r ay 

" "' "' aw 
+ Re aw 

sin 6 aP 2"' (17c) 
d1 uv ax• = + IJ w az 

,. 
"' ao ae v28 aa ao . + Ra "' " (18) Pr a+ Pc u -a"s1n 6 u + Ra v = 

1 V X Pc ax ay 

where 

v2 a2 
+ 

a2 
+ 

a2 
= --2 -2 ax• 2 ay az 

The above equations are to be subjected to the following boundary conditions: 

" " " a a u = v = w = ay = 0 at y = 0 (rigid wall) 

" " 
(19) 

au " ... ao "' = v = w = ay + He = 0 at y = 1 (free surface) ay 
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Here, various dimensionless quantities are defined as: 

"" H = hd/k, P = P'/(~u0jd), Pc 

Re = 

(x~y,z) = 

= vjo. 1 Ra = 

= gd2 
2v 

" ,., " (u 1 V 1 W) = 

=(u' v' w')/u 
... 
u = I I 

0 
I 

0 

(X,Y,Z)/d, x =-x' /Pe, 

T - T - • oo2 "" 6 
= < q ct/k) • 9 = 

0 

= Pr · Rc, Pr 
4 

ygqod 

ko.v 

ygqod3 

vk 

T' 
(q

0
dfk)' 

u 

,. 

= TI; 
Do 

vt 
=-:2 

d 
. 

where P., Pr, R. and the Peclet number, Prandtl number, Rayleigh number and 
the Reynolds number at vertical position of the system respectively. 

In accordance with linear stability theory, the solutions for the perturbations 
u,v,w,p and T may be expressed in the form: 

F(x' ,y,z,T) =F*(y)exp[c*x'+i(a
1

x• +a
2

z) +cT] (20) 

where C. is the amplification factor; c is, in general , a complex number; a
1 

and 
a2 are the wave numbers in the x and z directions respectively. When the 
disturbances are considered stationary, (c = 0) as verified in references are 
(7,8, 10). Furthermore, if attention is confined to neutral stability, one sets c* =0. 
When the solution (20) is introduced into the system (16) to (18), one obtains 
the following stability equations for the three-dimensional distubances as: 

(21a) 
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du 
ia1 Re uv u• sin o + Re dyv v* sin o 

. R u e•sino+Ra aeu*+Raa 8 v•=(D2 -a2 )e• -z.al e v Pe ax ay , 

together with the boundary conditions 

• 
u• = v• = w• ~ ~ = 0 

dy y = 0 (at rigid wall) 

(21b) 

(21c) 

(21d) 

(21e) 

(22) 
du* = v* = w* dy 

d8* = dy + H * = 0 y = 1 (at free surface) 

where, 

The onset of instability for the above system is associated by only one of the 

following two dimensional disturbances [16]; 

Longitudinal Rolls: The governing equations for the analysis of the longitudinal 
rolls are obtained by setting a1 = 0 in the system (21). Then, if p* and w* are 
eliminated fromthe resulting equations, the following equations are obtained. 

(02 - 2) a2 
+ u (23a) 
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(23b) 

Ra a8 + ao + 
-- Pr ax+ u + Ra ay v (23c) 

These equations must be solved to the following boundary conditions; 

+ + dv 
+ de+ 

u = v = = = 0 at v = 0 (rigid wall) dy dy 

du+ ct 2v+ cta+ 
(24) 

v+ + He+=·o· at 1 (free surface) dy = = = dy y = dy 

where: 

u+ = u*fsin tS, x+ = xfsin o, .v+ = v ' e+ = e* 

Transverse Rolls: The equations needed for the analysis of transverse rolls are 
obtained by setting a2 = 0 in the system (21). The.n, if the dependent variables 
u* and v* are replaced by the perturbed stream function 1/J* such that 

v* = - ia •1·* l't' ' 
* dill* u =--dy 

and p* is eliminated fromthe resulting equations, we find, after some rearranging, 

2 
(02-a~) ~*-ia1sin tS Re[uv(02-a~) - o2uv].p* 

* cte* . = [ia1 a COS tS + dy S1n o) 

(0
2 

- a~) a* - ia1 [Pe uv a* sin o - na ~; 1/J*] 

Ra aa ~ = 0 Pe ax dy 
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These equations must be solved subjec to the following boundary conditions: 

~· = d~· = de* = 0 dy dy y = 0 (rigid wall) 

(27) 

de* 
dy + He* = o y = 1 (free surface) 

SOLUTIONS OF TilE EIGENVALUE PROBLEMS 

The two eigenvalue systems given by equations (23-24) for the longitudinal 
rolls and by equations (26-27) for transverse rolls are solved here to a higher 
order of approximations by applying the Chandrasekhar for the first system and 
Galerkin method for the second system. 

Solution for the Longitudinal Rolls 

To solve the stability problems given equations (23) and subject to the 
boundary conditions (24), the function 9+(y) is represented in a series of 
orthogonal functions that satisfy its boundary conditions, by following 
Chardrasekhar, as 

(28) 

where the eigenvalues 11-m's and the orthogonality condition for the eigenfunctions 
9m *(y) are the same as those given previously under the section of the base flow 
analysis by equations (8b) and (8c), respectively. 

When the above solution for t)+(y) is introduced into equation (23b) together 
with the.expression for V+(y) chosen as 

= a2 cos 6 2 

00 
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one finds 

2 2 2 
( D - ) v* = cos ~ y a2 m m (29b) 

The solution of this equation subjected to the boundary conditions (29) for v m * (y) 
gives vm *(y). Choosing 

00 

A *< , m urn Y'' I 
m=l 

(30a) 

and introducing this expansion together with those obtained above for e+(y) and 
v+(y) into equations (23a), one obtains 

ctli 
( D 

2 
- a 

2 
) u * = .!. a 

2 
sin 2 cS v v * ( y ) + cos ~ y (30b) 2 m 2 2 dy m m 

The complete solution of urn *(y) is obtained from the above equation together 
with the boundary conditions (24) for urn *(y). 

To evaluate the eigenvalues of this system, the above solutions for e+(y), v+(y) 
are introduced into equation (23c) and the orthogonality condition (8c) is utilized 
to yield the following infinite order secular determinant for the evaluation of the 
Rayleigh number, R., 

II Emn + Ra F mn II = 0 for (n = 1,2,3, ... ) (31) 

where 

E 2 2 
N cS = (~m + a2) mn m mn 

Nm is given by (8c), and 

1 

= J [...!.. ae * 2 
c5 

a a v*(y)]dy F u (y) + a2 cos ay mn Pc ax+ m m 
0 
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Solution for the Transverse Rolls 

The system for the transverse rolls governed by the differential equations 
(26) and the boundary conditions (27) is complex. Therefore, the solution of this 
system should be complex. The Galerkin method is applied to construct solutions 
for the dependent variables lll*(y) and 8*(y) so that the boundary conditions (27) 
are satisfied. Thepr~per solution for this problem is taken as: 

N 
lll~(y) = I Amcpm(y) 

m=l (32) 

el (.y) = 
N r Bmem(y) 

m=l 
(33) 

The orthogonal functions ¢;(Y) and B;(Y) which satisfy their boundary conditions 
are given as: 

cosh aiy - cos aiy sinh «i y - sin rJ..y 
4>i (y) = 1 (34.a) cosh ai - cos ai - sinh ai - sin ai 

9i(y) = cos lJiY for (i = 1!2, 2N) (34b) . . . ' 

and the eigenvalues a; and IL; are obtained respectively from the solution of the 
following transcendental equations 

coth a - cot a = 0 

lJ sin lJ - H cos lJ = 0 

The functions ¢;(y) satisfy the following orthogonality condition: 

1 

f 'i(Y)4>j(y)dy = 
0 
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where, Nct>i = 
2 tanh2 a. sinh a. sin a. (cosh a. cos a -1) 

I I I I 1 

(sinh ai - sin aJ4 

The orthogonality condition for 8i(y) functions is the same as that given previously 
by equations (8c). The coefficient Am, Bm, are complex quatities. By substituting 
(32) and (33) into equations (26), and utilizing the orthohonality property for 
each equation, and utilizing the orthogonality property for each equation, we 
obtain the following equation in the matrix form as: 

• X = 0 m (37) 

where the elements (y)nm of the [Ynml matrix are 2x2 matrices resulting from 
orthogonalization of equations (26) and the vector Xm consists of the coefficients 
of the series (33). 

The solution of the homogeneous system given by equation (37) is 
characterized by the following secular determinant, of OI]der 2N x 2N for the 
determination of the eigenvalues, R

8
• 

(n.=l,2, ... ,N) (38) 

RESULTS AND CONCLUSIONS 

Before presenting results on the effects of the Reynolds number Re based on 
the vertical position, t~e Prandtl number Pr, the Biot number H, the dimensionless 

axial distance x+ = ~~]I (Pe sin 8), the inclination angle 8 and the uniform 
entrance temperature to discuss the effects of these parameters on the base flow 
temperature distributions which strongly influence stability. 

To present the graphical results,it is concenient to redefine new base flow 

temperatures Bb(x+,y) and Bob as: 

9( x+ y) e (x,y) = ' 
b 1 + 1 

II 

(39a) 
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1 + 1 
H 

and a new dimensionless distance x as 

(39b) 

sin o) (39c) 

Figures 2 and 3 shows the results for the base flow temperature distribution 
Bb(i,y) in the developing region as a function of the axial dimensioless coordinate 
x and the Biot number H = 0.1 and 100 for various values of the entrance 

temperature, Bob = -1, and 1. As shown in these figures, for Bob= -1 and 0, the 
fluid temperature Bb(x,y) increase as x increases. However, for Bob = 1, that is., 
when the entrance temperature becomes larger than the surrounding 

temperature, the flow temperature increases with increasing x for H = 0.1. As 
the Biot number increase (i.e., H d 100), the hotter fluid in the developing region 
losses more heat to the surroundings than it gains from the plate. As a reult, the 
base flow temperature inthe entrance region decreases as the fluid flowing over 
the inclined heated plate specially for fluid layers near the outside surface as 
shown in Figure 3. The variation of the thermal entry length xd with the Biot 
number H, is also shown in these figures. For example in comparing the cases 

xd = 100 for H = 0.1 and zd = 0.5 for H = 100, the thermal entry length is observed 
to decrease with }increasing H. 

The numerical calculations carried out for the longitudinal and transverse 

rolls, indicate are less in magnitude than those for the transverse rolls for all the 
ranges of the }system parameters considered in this study. This means that 
longitudinal rolls have priority of loccurence over transverse rolls. So, the results 
presented in the next figures of stability are for the longitudinal rolls. 

The critical Rayleigh numbers Rae at the onset of instability are of primary 
interest in this study. The results presented in Figures 4 and 5 for Pr =7 (i.e., 
water, and (Job = 0 (i.e., To = T 002), show the effects of the Raynolds number Re, 
the Biot number N and the inclination angle a on the critical Rayleigh number 
in the developing region. It is shown in these figures that with increasing H, 
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stability is improved due to the darning effects of the Biot number on the 
perturbation of the temperature profile. Another interesting feature of these 
figures is that in the developing region and with smaller values of Reynolds 
number (i.e., Re = 50), the critical Rayleigh number for a given x does not change 
with inclination. The reason fo!' this fluid is caused by the combined effects of 

the axial base flow temperature gradient aa~b and the transverse flow 

temperature gradient normal to the fluid layer aa~h . In the developing region 

and for small values of Reynolds number, the efTect of the axial temperature on 
instability is more significant than that for normal transverse gradients. As a 
result, the stability is controlled only by the axial temperature gradient as 
apparent from equation (23c). This, in turn, implies that v+(y) governed by 
equation (23b) is vanishingly small (i.e., equation (23b) may be omitted). Then 
the Rayleigh number becomes independent of inclination. For larger values of 
the Reynolds number Re ~ 500, and for Biot numbers H ~ 0.1, which is the case 
in Figure 5, it is found that the critical Rayleigh number increases with inclination. 
The reason for this can be attributeto the fact that the thermal boundary layer 
grows very fast as H increases. In this case, the stability is not affected only by 

aa~b , but it is also influenced by aa~h . Therefore, the critical Rayleigh number 

Rae is expected to increase with indimition but at a lower, lesser than that for 

the fully developed region in which Rae cos 8 = Raeh· The graphical results 
presented in these figures show that the critical Rayleigh number attains a 
maximum va}ue in the developing region for large values of H. This is to be 

expected, because in this case, as X increase, the component aa~b increase with 

a rate higher than the decreasing rate on the component aa~b ' which in turn 
tends to bring the fluid to the fully developed state. This explains the peak in 
the Rayleigh number. A very important conclusion deduced from these figures, 
is that (i.e., Re = 50) and with H up to -0.1, the critical Rayleigh number, Rae, 
for given values of H and x is linearly proportional to the Reynolds number, Re, 
at any inclination, 8 < 90°. From this valuable results, the critical Rayleigh number 
at any Reynolds number within the above range can readily be calculated. 
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P,. = 7 
Re=50 

0 --8•100 
--- =60 

Figure 4: Variation of Rae in the Thermal Developing Region 
with 8 and H for Pr = 7. 

4 
10~------------------------------------------~ 

2 

Pr = 7 • Re = soo 
,H=100 

....... ..... ........ 
....... ~--................... -..-. __ _ 

.......... -.... ----
--0=60° 

=10 

~wo-----------------------

10 =0·01 

Figure 5: Variation of the Critical Rayleigh Number Rae in the Thermal 
Developing Region with the Inclination Angle 8 and Biot Number H 
for Pr = 7, Re = 500. 
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To show the variation of the liquids of high Prandtl number, Pr = 100 (i.e., 
oils). The results obtained for this case are presented inFigures 6 and 7 for Re 
= 50 and 10 respectively. Both figures show that the critical Rayleigh numbers 
for the value of Pr considered here, are larger than those plotted for Pr = 7. This 
means that, for channel flow problems studied here and in Reference [16], 
increasing the Prandtl number stibilizes the laminar forced flow. While for natural 
convection flow problems, investigated in the literature, it is known that increasing 
the Prandtl number destabilizes the laminar natural flow. The reason for the 
stabilizing effect of the Prandtl number on the fluid for the problem considered 
here can be attributed to the fact that, for large values of Prandtl number, the 
contibution of the axial temperature gradient on thermal instability becomes less. 

So, the destabilization due to aa~b is reduced. For the fully developed case, 

aa:b vanishes and the stability problem reduces to the conventional free-surface 
problem irrespective of the presence of flow. The critical Rayleigh number for 
all these figures, in the fully developed region becomes independent of Pradtl 
number, and Rae at any inclination is determined from the relation Rae . cos S = 
Raeh' where Raeh is the critical horizontal value for the case offree surface problem. 

3 
10 

....... 

F}:JOO 
Re=50 

--0=10° 
0 

=60 

''--......H =100 
....... ....... .............. 

............ 1---
~~~ ~----------­----

~-------=-::::...::::..::::.- H = 100 

-
X 

1 
0·1 

Figure 6: Variation of Rae in the Thermal Entrance Region with S and H for Pr 

= 100, Re =50. 
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4 tor----------------------------------. 
--- 5=10° 

=60 
Pr=100, Re = 10 

Ra c 

2 
10 

I 
10 

-2 
10 

=0-1 

=0-01 

-I 
10 

...... ---

·o I 2 
10 - 10 10 

X 

Figure 7: Variation of Rae in the Thermal Entrance Region 

with l> and H for Pr = 100, Re = 10. 

The effect of the uniform e:.trance temperature 8 ob' on the initiation of cellular 
convection has been considered in Figure 8, for Pr = 100 and 8 60. For small 

Biot numbers H = 0.01 and 0.1, the stability is slightly improved compared to 

that of 8ob' if 8ob is reduced to 8ob = -1 (i.e., To< T "'2, that is, the fluid enters with 
temperature less than the surrounding temperature) and the system becomes 

less stable by a narrow margin. for 8ob = 1 (i.e., To< T J. For large values of Biot 

number H = 100, the fluid is most stable for 8 ,.~ = 0 near the upstream region, 

and least stable for 8ob = 1 in the other portion of the developing region. These 
results can be explained as follows: From the base flow temperature profiles in 

the entrance region for H = 100, as shown in Figure 3, it can be concluded that, 

for the case when 8ob = 1, the entrance region is very short and heat losses to 

the surrounding are doubled. As a result, instability sets in earlier than that with 

Bob = 0. When Bob -1, the liquid film flowing along the plate is heated at much 

faster rate than the other cases, as it receives heat from both the lower plate 

and the atmosphere. This makes the fluid less stable near the upstream region, 
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b a ob 
ecause dr is very large, and most stable for the other portion of the entrance 

region due to the slow change in the temperature profile with the axial distance 
x, or the transverse coordinate -y. 
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-2 
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P,-=100 
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2 
10 

Figure 8: Effect of the Entrance Temperature 8 on the Critical Rayleigh Number 
Rae in the Thermal Entrance Region for Pr = 100, Re = 10. 

Convergence of Solutions 

The eigenvalues {3m of the eigenvalue problem (9) related to the base flow 
temperature are determined in the present analysis using the Galerkin method. 
The results obtained in this manner are compaireq with those numerically 
calculated in references [17 -18]. It is found that the analytical results are very 
accurate as listed in Table 1. It is to be noted that, the (3m's (Galerkin) listed in 
this table are computed from the determinant (10) of order 10 x 10. 
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Table 1: Comparison Between Galerkin and Numerical [17-18] Solutions for {3n. 

H =0 H=oo 

n {3 n(Galerkin) {3n(Num.) {3n(Galerkin) {3n(Num.) 

1 4.28723 4.28724 2.263078 2.263106 
2 8.30375 8.30372 6.297614 6.29768 
3 12.3107 12.3144 10.30764 10.3077 
4 16.3147 16.333 14.30764 14.3077 

The covergence of the solution constructed for the longitudinal rolls solved 
the Chandrasekhar method are checked and found to converge very fast. Some 
of these numerical results are presented in Table 2. The results shown in this 
table indicate that the difference between the third approximate and the second 
approximate Rayleigh numbers is always less than 1 percent. 

Table 2: Illustrates the Convergence of the Critical 
Rayleigh Number for (Pr == 7, Re = 500, H = 0.1 and 8 = 10°). 

Rae 

x 
n=1 n=2 n=3 

0.005 678.0344 678.2218 678.1258 
0.1 608.6651 608.8592 607.0391 
0.05 544.8353 544.6155 542.416 
0.1 530.4766 530.1381 528.0033 

1 417.5945 415.9223 412.8229 
10 392.3677 390.4931 387.638 

-106-



a 

p' 
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Pe 

Pr 

qo 
Ra 

Re 

t 
... 

U,V,W 

Uo 

u 
x,y,z 

X,Y,Z 

X 
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NOMENCLATURE 

magnitude of wave vector, a= aJ2 + a22 

wave number in x -direction 

wave in z-direction 

a complex n_umber 

amplication or damping factor 

thickness of the film 

gravity 

heat transfer coefficient at the surface 

Biot number at the upper surface, hd/k 

thermal concuctivity of the liquid 

perturbed pressure 

pressure 

Pecletnumber, U
0
d/a 

Prandtl number, v/a 

uniform conductive heat flux at the lower surface 

Rayleigh number, ygq
0
d4/kav 

Reynold number, Uod/v 

time 

fluid temperature 

dimensionless bass flow velocity 

perturbed velocity components 

dimensionless perturbed velocity components 

characteristics velocity 

dimensional base flow velocity at the vertical position 

dimensionless cates ian coordinates 

cartesian coordinates withY measured normal to the fluid layer 

( ~ )/(2Pe sin 8) 
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Greek Letters 

v 

p 

t 

Superscripts 

I I"''*'+ 

Subscripts 

co 

0 

thermal diffusivity 

coefficient of thermal expansion for fluid 

angle measured from horizontal 

dimensionless base flow temperature 

dimensionless entrance temperature 

dimensionless perturbed temperature 

kinematic vilocity 

density of fluid 

dimensionless time 

dimensionless perturved stream functions 

Laplacian operator 

refer to mean quantities 

refer to perturbed quatities 

refer to outside environment 

fixed quantities 
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