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ABSTRACT 

New sufficient conditions for the Schur stability of interval matrices are 
provided. Moreover, a time saving version of a necessary and sufficient 
condition for the Schur stability of a class of interval matrices is introduced. 
Improvement over conditions in the literature is shown by examples. 

NOMENCLATURE 

IAI If A= [au], then IAI = [laul] which is non-negative. 

p( A] Spectral radius of A = max lAy I where Ay is an eigenvalue of A 
I 

IIAIL, infinity norm of the matrix A . 

Ar Transpose of A 

±A A Or -A 
o Null matrix with zero elements 
I Identity matrix 

1. INTRODUCTION 

The problem of maintaining the stability of a nominally stable system subjected 
to perturbations has been an active area of research for some time. There is 
considerable literature on this topic for continuous time systems [ 1-6, 8, 16]. 
Recently, the robust stability of discrete time systems also received considerable 
interest [ 5-17]. Motivated by the results obtained for Hurwitz stability of interval 
matrices, we consider here the Schur stability of interval matrices for discrete time 
systems. , 
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An interval matrix is a real square matrix in which all elements are known only 
within certain closed intervals. In mathematical terms, an n x n interval matrix 
A1 = (B,C) is a set ofrealmatrices defined by 

(I) 

The set A1 is described geometrically as a hyperrectangle in the space 9tnxn of the 

coefficients au . We say that a set A1 is Schur stable if every A e A1 is Schur stable. 

Associated with the set A1 we define the average matrix vat the center of the 
uncertainty hyperrectangle and the deviation matrix D as 

(2) 

The interval matrix A1 can be represented using the matrices v and D as follows: 

IEI:s;D (3) 

Where lEI denotes the modulus of the perturbation matrix E and :s; denotes the 
inequality of the corresponding elements of matrices under consideration. 

Utilizing special type of matrices, in particular, a Morishima matrix, this paper 
provides an easy to use version of a necessary and sufficient condition to check the 
Schur stability of a class of interval matrices. The equivalent version, reported in 
[1, corollary 1.3] does not provide a methodology for constructing the extreme 
vertex of the hyperrectangle that corresponds to the test matrix, but rather gives, in 
some cases, a large bundle of extreme vertices which are needed to be checked 
individually. Furthermore, the sufficient conditions introduced in this paper have 

eliminated the constraint "}~ {jh;;j,jcvl} <I that was required by most conditions in 

the literature [5-7,9,13,17]. These sufficient conditions have shown to be 
conclusive about the stability of some interval matrices where conditions in the 
literature have failed to do so. 

In what follows; some definitions, lemmas, corollaries, and theorems are 
introduced. The results are related to those reported in the literature when it is 
appropriate and warranted .. 
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2. MAIN RESULTS 

1- A matrix A is called a Morishima matrix if there exists a diagonal matrix, s , 
ofthe form 

i,j = 1.,2, ...... ,n (4) l±l 

s =h]= 0 

i=j 

such that SAS = IAI . 

2- A matrix A is Schur stable Morishima if it is both Schur stable and Morishima. 

Lemma 1 [18] 

If p{ A]< p, then pi± A is a non-singular matrix. p[A] is the spectral redius of a 

expressed as p[A] =maxi I A.i I and A.i is an eigenvalue of A. 
With S being the same as in (4) for both Band C in the interval matrix 

A1 = (B,C] , we construct the matrix w = [ w!i ], i,J = l, ...... n where 

w!i =max {(SBS)!i,(SCS)11 } 

'·' 
This constructed matrix and the average matrix V defined in (2) are used often in 
the following discussion. 

Theorem 1 

If ±V is Schur stable Morishima, then A1 is Schur stable if and only if w is Schur 

stable. 

Proof 

Since ±V is a Morishima matrix, then there exists s ofthe form (4) such that 

S(±V)S = lVI is the average matrix of the interval matrix SA1S. If A1 is Schur stable, 

then SA1S is Schur stable. But w e SA1S , then w is Schur stable. 

If w is Schur stable, then for every A e A1 , we have p{A] = p{SAS) :!> p{W] < 1 which 

implies that A1 is Schur stable. This completes the proof. 
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This theorem concludes that the search for a Morishima matrix is by only testing 
the average matrix or its negative. While in the version provided in [1], it is 
needed to look among all extreme vertices of the interval matrix for a Morishima 
that corresponds to the test matrix. In our case, the test matrix w is determined 
directly. For matrices of large size, this improvement or version of the condition 
might be appreciated significantly. Furthermore, it may be important to indicate 
that if ±V are not both Schur stable Morishima, then the theorem provided fails to 
conclude any thing about the stability of A1 = [B,C) . 

Corollary 1 

If ±H is Morishima, then the interval matrix [ -IHI.Inl] is Schur stable if and 
only if H Schur stable. 

Proof 

The null matrix 0 is the average matrix for the interval [ -IHI.IHI] . It is also Schur 

stable Morishima that satisfies Theorem 1 with s such that s( ±H)S = IHI . 

Corollary 2 

A1 is Schur stable if lVI + D is Schur stable. 

Proof 

A1 is a subset of the interval matrix [-(lvj +D),(Ivl +D)]. But if lVI +D is Schur 

stable, then it is Schur stable Morishima. Therefore, the Schur stability of A
1 

follows from Corollary 1. 

These two corollaries are stated as the main theorem and a corollary, 
respectively, in [1] while Corollary 2 coincides with the main result reported by 
Rachid [7]. Moreover, for interval matrices that do no have a Morishima matrix in 
them, we introduce more sufficient conditions for their Schur stability. These 
conditions are shown, through examples, to improve the condition in corollary 2 

and at the same time refrain from the constraint max {lbul·lcul} <I . 
l,j 
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Theorem 2 

If the average matrix v is such that lVI is Schur stable, then A1 is Schur stable if 

~{I -IVItn) < 1. 

Proof 

The interval matrix A1 can be represented in the form v + E where lEI ~ D . Using 
the equality 

z1 -(v +E)= (zi -vf1[I -(zi -vtE] 
and Lemma 1, it is clear that the Schur stability of v +E 1s satisfied if 

~ (zi -vt E] < 1 for all lzl ~ 1 which is also true if 

~(zl- Vf1 E] ~ ~~(zl-Vf1Jn] ~ t{{I -lvlt n] < 1 
for all lzl ~ 1 . 

Theorem 3 

Let v e A1 be Schur stable average matrix of A1 , then A1 is Schur stable if M has 

no eigenvalues on the unit circle and JJ(I- vtJL < ll~ll"' where D is the deviation 

matrix and 

Proof 

The interval matrix A1 can be represented in the form v + E where lEI ~ D . Using 

the equality 

z1 -(v +E)= (zi -vt[I -(zi -vtE] 
and Lemma 1, it is clear that the Schur stability of v + E IS satisfied if 

~(zl -Vf1E] < 1 for all lzl ~ 1 which is also true if 

ll(zl -Vf1 ElL ~ ll(zl-vt JIJnll«> < 1 
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for all lzl :1!: 1. But if M has no eigenvalues on the unit circle and 11(1 -vtll.., < l~ll ... 

[19], then IKzT-vf'IL < ll~ll... . This completes the proof. 

Example 1 

Consider the interval matrix of the discrete time systems A1 = [B,C) with 

B = [ 0.4 -0.6]. C = [ 0.5 -0.4] 
- 0.6 0.4 - 0.4 0.5 

The average matrix v is a Schur stable Morishima with 

[
0.45 -0.5] [1 0] 

v = - 0.5 0.45 ' s = 0 - 1 

Applying Theorem 1, we conclude that 

[
0.5 0.6] 

W= 0.6 0.5 

is not Schur stable. Therefore, A1 is not Schur stable. Notice that sws e A is not 
Schur stable. 

Example 2 

Consider the intervai matrix of the discrete time systems A1 = [ /J,C) w.th 

B= [
0.15 0 l 
0.4 - ().45 ~· [

0.55 0 ] 
c = 0.8 0.25 

TI1e average and deviation matrices are 

V= l '0.35 0 ] 
0.6 -0.1 ' [

0.2 0 ] 
D = 02 0.35 
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Since ±V is not Morishima and lVI 
t{(I -IVIt n] < 0.3889 . Therefore A1 

is Schur stable, we use Theorem 2 to get 

is Schur stable. Notice also that 

H - is a Schur stable Morishima matrix, which implies that, [
0.55 0 ] 

- 0.8 0.45 

[ -IHI.IHI] :::::> A1 is Schur stable by corollary 1 and corollary 2. Hence, A1 is Schur 

stable. 

Example 3 

Consider the interval matrix of the discrete time systems A1 = [B,C) with 

B = [0.5 -0.6] 
0.4 05 ' [

05 -0.4] 
c = 0.6 0.5 

The average and deviation matrices are 

v- ' - [0.5 -0.5] 
0.5 0.5 

= [ 0 0.1] 
D 0.1 0 

Notice that ±V is not Morishima, and lVI is not Schur stable. Corollary 2 and the 
condition in [6] are inconclusive about the Schur stability of this interval matrix. 
However, using Theorem 3, we conclude that A1 is Schur stable. 

3. CONCLUSIONS 

New sufficient conditions for the Schur stability of interval matrices are 
provided. The conditions are shown to improve and sometimes coincide with 
results reported in the literature. One disadvantage of the sufficient condition in 
Theorem 3 is giving a blind eye to the structure of the perturbation of E and 
dealing only with the infinity norm of E . The necessary and sufficient condition 
that is provided in Theorem 1 improves the necessary. and sufficient condition in 
[1, corollary 1.3] in the sense of its easiness to check the Schur stability of interval 
matrices. 
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