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ABSTRACT 

This paper addresses utilization of proportional-plus derivative (PD) control 
algoritluns for time-optimal control of flexible-robots. Flexibility is modeled 
using one mode of vibration with negligible structural damping. Two novel 
methods for time-optimal control were derived and closed form equations for 
tuning the required PD gains were obtained. The resulting controllers were 
used to control a high-speed flexible-robot for minimum settling time in 
response to a step angular motion command. Similarly, for the sake of 
comparison, three other techniques were used to control the same flexible­
robot arm. The first used multi-switch bang-bang control technique. The 
second used PD approach in which the gains are computed through locating 
the dominant poles as far left as possible in the left hand side of the complex 
plane. The third approach used multi-switch bang-bang control followed by 
PD control. Uncertainties were introduced in the model to evaluate 
robustness of the methods. Results obtained showed that the novel techniques 
out performed the other ones. 

KEY WORDS: PD Control, High-Gain Control, Time-Optimal Control, Flexible-Robots. 

INTRODUCTION 

Recently there have been increasing needs for high-speed lightweight robots, 
especially in chip placement and electronic part assembly. These robots tend to be 
flexible, leading to vibrations during operation. This motivates researchers to 
investigate the control of such robots. 
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PD control, LQR technique, robust servomechanism theory, Lyapunov method 
and quantitative feedback theory are evaluated in [ 1] for the control of flexible­
robot arm. The optimal torque for motion control and vibrations suppression of 
robot arm at the end of a prescribed rotation is determined in [2]. The end effector 
trajectory control of an elastic macro-micro manipulator using inverse and 
predictive controllers is investigated in [3]. Comparisons between PD controller 
considering gravity, feedback linearization approach and sliding mode control are 
made in [4] for trajectory control of flexible joint manipulators. 

Integrated structure/control design methodologies of high-speed flexible-robot 
arm are presented in [5-8]. The minimization of settling time of PD control is 
performed in [5] by adjusting the real part of the dominant closed-loop pole to be 
as far left as possible in the complex plane. The traveling time of multi-switch 
bang-bang control is minimized in [6-8]. The shape of flexible-robot arm is 
optimized using constant topology and varying arm cross-section size in [5,6]. 
While in [7,8] varying topology and varying arm cross-section size are used. In [8], 
air damping was considered and proved to have significant affect. In [6,8], multi 
switch bang-bang control is followed by PD control to improve the robustness of 
the system. However, PD control gains and switching time from bang-bang control 
to PD control are obtained by trial and error method. 

In [9], a connection is made between time-optimal control (single switch bang­
bang control) and PD control for second-order servo systems. It is shown that the 
performance of PD control is almost identical to bang-bang control provided that 
the ratio between proportional and derivative gains is computed as a function of 
initial conditions. Unlike the open-loop bang-bang control, this PD method is a 
feedback control type. Hence, the time-optimal PD controller could guide the 
system to the required position in the presence of disturbance, while the open-loop 
bang-bang can not. 

In this paper, an attempt is made to extend the work presented in [9] to include 
flexible systems. In other words, a new PD algorithm will be derived which is 
equivalent to multi-switch bang-bang control. Such control to replace the 
algorithms used in [6,8], and to eliminate the problems associated with gains and 
switching between the two controls. At first the time optimal PD algorithm 
presented in [9] is evaluated. 

EVALUATION OF TIME-OPTIMAL PD CONTROL (RIGID 
SYSTEM) 

The second-order servo system with input constraints and negligible damping is 
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described by the following set of state space equations: 

XI =Xz 

x2 =bu 

lui ::;M 

(1) 

Where b and M are positive constants. M represents the upper limit magnitude 
of the control input. The system of equations ( 1) can be brought from an initial 
point x1(0)=x1° and x2(0)=0 to the origin in a minimum time using the following 
control algorithm [9]: 

u = -k(px1 + x2 ), k 4 oo lui::;M (2) 

Where (p ), the ratio of the proportional gain to the derivative gain depends on 
initial conditions and is given by: 

~ 
p= 2VIx~l 

(3) 

Algorithm (2) is a PD controller with infinite gains. The upper bounds for the 
PD gains are related to the sampling period, T, [9, 10]: 

2 
k<­

bT 

2 
p<­

T 

(4) 

(5) 

With finite gains it can be shown that the PD algorithm (2) approximate closely 
time-optimal control. For verification we consider b=1, M=5, and xi

0
=10. 

Consequently p is evaluated to be 1.414. Figs. 1 and 2 show the phase plane and 
displacement response for time-optimal control (bang-bang control) and time­
optimal PD algorithm (2). The time-optimal PD algorithm is tested for a high gain 
k=300 and a low gain k=10. In the case of high gain the time-optimal PD algorithm 
and time-optimal control show identical results. In the case of low gain the results 
of time-optimal PD control differ slightly from time-optimal control. It is to be 
noted that the open-loop bang-bang control required to bring the system of 

293 



Fanni, Al-Salem and Abdel-Rahman 

equation (1) from initial conditions x1(0)=x} and x2(0)=0 to the origin is: u=-M for 
0 :::; t < tr/2 and u=M for tr/2 :::; t :::; tr; where tr is the total traveling time given by: 

t =2 fRf 
f vw 

1r---~--~----~--~--~----. 

!t + Time-Optimal 1 x2 o 
-1 

-2 

-3 

-4 

-5 

-6 

-7 

·i _ PD (time-optimal) k=300 . 
\ ------ PD (time-optimal) k=IO f 
., I 

\'r. / ~ 
·~, 

~~,... ./ 
~ 

~2~--~o----72----4~--~6----~B~X-!~10 

(6) 

' 
+ Time-Optimal 

_ PD (time-optimal) k=300 
------ PD (time-optimal) k=IO ..• 

Fig. 1 Phase plane of rigid system 
Fig. 2 Displacement response of rigid system 

The equivalence between PD algorithm and time-optimal control can be proved 
using Fig. 3, [9]. In the Figure, curve A is the theoretical optimal trajectory before 
the switching point s. Curve B is the theoretical optimal trajectory after the 
switching point s. The Straight line C is passing through the switching point s and 
the origin. It can be shown that the equation of line C is px1+x2=0, where p is given 
by equation (3). The control input for both time-optimal control and time-optimal 
PD algorithm takes the value (-M) on the right hand side of line C and the value 
(M) on the left hand side. This shows that both controllers are equivalent. It should 
be noted that for a high value of gain k, the control input for the time-optimal PD 
control takes the values ± M except at small regions around the switching point s 
and the origin. 

To help evaluating the time-optimal PD control, it is desired to compare the 
gains of the time-optimal PD control with those corresponding to minimum settling 
time. A computer program was written using MA TLAB [ 11] to determine the 
response and settling time for the system given by ( 1 ), for arbitrary values of gains 
K and p. Again. The system parameters and initial conditions are chosen as in the 
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previous example. Using MATLAB minimization-function, the optimal values ofk 
and p were obtained for minimum settling timet,.. This is done for different settling 
time tolerances (2%, 1%, and 0.5%). Table 1 summarizes the optimization results 
and shows the corresponding ts for time-optimal PD control (k=300, p= 1.414). 

Table 1. Optimal gains for different settling times 

2%t,. l%ts 0.5%t,. 
Optimal K 225 238.1044 224.6965 
Optimal p 1.455 1.4337 1.4232 
Optimal ts 2.457 2.56 2.636 

Time-Optimal PD ts 2.544 2.623 2.676 
(K=300, p=1.414) 

Fig. 4 shows the response curves for different optimal gains, which are very close 
to each other. From the result presented in Table 1 and Fig. 4, one can conclude the 
following: 

1) The response of the time-optimal PD control is the only one without overshoot. 
2) The optimal p converges to the time-optimal PO control value of 1.414 as the 

allowable tolerance settling time decreases. 
3) The optimal ts converge to the time-optimal PD control ts as the allowable 

tolerance settling time decreases. 
4) The gains of time-optimal PD control can be considered optimal for minimum 

settling time provided that the allowable tolerance is very small. 
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PROPOSED TIME-OPTIMAL PD CONTROL (FLEXffiLE SYSTEM) 

In the case of dynamical system with rigid mode and one flexible mode with 
control input constraints, the system can be represented by: 

i(t) = Ax(t) + bu(t), lui:-::;M (7) 

where 

0 1 0 0 0 

0 0 0 0 bo 
A= b= 

0 0 0 1 ' 0 

0 0 -al 0 b, 

x(t) is the modal coordinate vector, u(t) is the control function, M is positive 
constant representing the upper bound control input, ro is the natural frequency of 
the flexible mode, and bo and b1 are the weighted mode shapes. Both bo and b1 can 
be obtained using finite element method. The displacement, y~, and the velocity, Yz, 
of the system can be obtained from: 

y=Cx, Z,] (8) 

. 0 The system of equations (7,8) can be brought from rest at y1(0)=yi to rest at 
YI(tr)=O in a minimum time using multi-switch bang-bang control [12] as shown in 
Fig. 5. The time intervals t. and tr can be determined from the following two 
equations: 

(9) 

cos(w t 1 I 2)- 2cos(w ta) + 1 = 0 (10) 

Fig. 6 shows a flexible system phase plane response for time-optimal control. In 
the Figure, s~, Sz and s3 are three switching points, and A and B are two switching 
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Fig. 5 Bang-bang control of flexible 
system 
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Fig. 6 Switching lines of flexible 
system 

lines. Line A passes through s, and s2 and line B passes through s3 and the origin. It 
is to be noted that the horizontal coordinate of switching point s2 is y 1°12. 

Our proposed time-optimal PD algorithm is aimed to employ the results of 
multi-switch bang-bang controller to achieve minimum time control. To achieve 
this one can imagine that the phase plane is divided into two halves with a vertical 
line passing through s2 separating the two sides. Then, an equivalent time-optimal 
PD algorithm for rigid system is applied to each side. This step takes into 
consideration two preconditions. First, intersection between the response curves, 
and line A and B occurs only at s~, s2 and s3 and the origin. Second, the two parts of 
the response curve in each half lie on opposite sides of the corresponding line. For 
large flexibility these two preconditions may be not satisfied, especially the first 
one. For such cases, approximation is possible. The PD algorithm for the first half 
of the phase plane can be written as: 

k~oo, juj~M (11) 

where p, is the slope of line A and y1 * and y2 * are the coordinates of Point s2. The 
PD algorithm for the second half can be written as: 

u = -k(p2y1 + y2), k~oo, juj~M (12) 
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where P2 is the slope of line B. The condition required to switch from the first 
algorithm to the second is Y1 ::::: y1 °/2. The procedure required to apply the algorithm 
is: 

1) Calculate the time intervals ta and tr from equations ( 9, 1 0). 
2) Calculate the time intervals between switching points: 

(13) 

3) Calculate the coordinates of the three switching points Y1\ Y2\ i=1,2,3: 

i - b]Mi (1 ) X~-] . ( ) i-1 ( ) 
X 3 - --2- - coscot(i-I)i + --sm cot(i-I)i + x 3 cos cot(i-I)i 

co co 
(14) 

; _ b]Mi . ( ) i-1 ( ) i-1 · ( ) 
X4 - --sm cot(i-I)i + x4 cos cot(i-I)i - x 3 cosm cot(i-I)i 

co 

y; = b0x; +b1x; 
y; = b0x; +b1 x~ 

N h . 0_ 0/b 0 0 0 ote t at. x1 - YI o, x2 = X3 = X4 = 0. 

4) Calculate p1 and p2: 

2 I 
p _ Y2- Y2 
I- y~- y; 

(15) 

5) Assume finite value for gain k beyond its limit and check the limits of p1 and 

P2· 

298 



Time-Optimal Control of High-Speed Flexible-Robot ...... . 

APPLICATION AND EVALUATION OF TIME-OPTIMAL PD 
CONTROL (FLEXffiLE SYSTEM) 

The new algorithm was applied to a flexible single robot ann found in [ 6]. The 
parameters of the robot ann are: total inertia J=O .151 kg-m2

, first pole P=2ll. 5 Hz, 
first zero Z=92.9 Hz, maximum input torque M=15 N-m, and initial position 
y1 °=7t/1 0 rad. The natural frequency and weighted mode shapes were computed 
from the following equations [8]: 

w = P, (16) 

Time intervals tr and t. were calculated from (9,10) and found to be 0.1125 and 
3.5E-04 sec. The coordinates of s~, s2 and s3 were calculated from (14) and their 
horizontal (rad) and vertical (rad/sec) coordinates were found to be (0.15888, -
5.2694), (0.15708,-5.0445), and (0.15528,-5.2694), respectively. The gain ratios P1 
and p2 were calculated from (15) and found to be 124.9 and 33.9, respectively. k is 
assumed to be 125. The phase plane and displacement response for the proposed 
algorithm and for multi-switch bang-bang control were determined using 
MATLAB program. The results are shown in Figs. 7 and 8. The curves for both 
approaches are almost identical. The results indicate the equivalent of the two 
methods. The 2% settling time of the proposed algorithm is 0.1006 sec. 
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Fig. 8 Displacement response of 
flexible system 

Since the three switching points s~, s2 and s3 are close to each other, it is thought 
that it might be feasible to use only one PD algorithm instead of two provided that 
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the gain ratio p is determined as the slope of a line passing through an imaginary 
switching point and the origin. The coordinates of the arbitrary assigned switching 
point are determined from the average coordinates of the three switching points. 
The phase plane and the displacement response for this new single-line PD control 
are shown in Figs. 9 and 10. The 2% settling time is 0.1021 sec. The results differ 
slightly from the previous double lines time-optimal PD control. 

For comparison, the time-optimal PD control for rigid system (described in 
section 2) was applied to the same flexible single robot example. Hence, the gain 
ratio p was determined neglecting the flexibility of the system. Fig. 11 shows the 
displacement response of the algorithm with slight overshot. The 2% settling time 
equals to 0.1187 sec. Although, the algorithm for rigid system is simpler than the 
proposed algorithms, the performances of the proposed algorithms are better in the 
presence of flexibility. 

In [5], minimizing the settling time of flexible-robot arm was obtained through 
adjusting the real part of the dominant closed-loop pole to be as far left as possible 
in the complex plane. The optimal gains (kp = k p) and (kv = k) are determined by 
the following equations in the case ofb/lb0

2 s; 4. 

(17) 

(18) 

In the case ofb/lbo2 2:: 4, the optimal gains can be computed numerically so that 
the three poles have identical real parts and the other pole has the least real part. 
The ratio b1

2/bo2 in the example carried out here is 4.183. Hence, the optimal gains 
were calculated numerically. The corresponding k and p were found to be 69 and 
145, respectively. The corresponding poles are -834, -519!0.4i, and -519. Fig. 12 
shows the displacement response, which indicates large overshoots. The 2% 
settling time equals to 0.4722 sec. This settling time is bout 270% higher than the 
value obtained in the proposed time-optimal PD control. Consequently, in the case 
of bounded control input these gains cannot be considered as optimal. They are 
optimal only if there is no limitation on the control input, which is not practical. 
Thus similar to the case of rigid system with bounded control input, the gains of the 
proposed algorithm can be considered optimal for flexible system. 
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Fig. 9. Phase plane of single-line time­
optimal PD control 
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Fig. 12. Response to PD control of 
optimal gains according to [5] 

EVALUATION OF THE PROPOSED ALGORITHMS IN THE 
PRESENCE OF MODELING UNCERTAINTIES 

Many researchers have attempted different approaches [5,6,8] to obtain 
mmnnum settling time of high-speed flexible-robot arm. In [6,8], multi-switch 
bang-bang control was used. This open loop control could guide the system to the 
required position only if there were no disturbances or modeling uncertainties, 
which is not practical. Therefore, the bang-bang control was followed by PD 
control. In [8], the PD control was applied at the end of the bang-bang control. In 
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[6], the PD control was applied after 90% of the theoretical traveling time of bang­
bang control. The PD control gains were determined by trial and error method. 

In order to compare the strategy in [6,8] with the proposed method, parametric 
uncertainty is introduced. Based on the same flexible robot arm used in section 3, a 
5% uncertainty is assigned to the inertia parameter b0 . In our simulation, 
uncertainty has resulted in large overshot at the end of the bang-bang control. 
Therefore, the PD control is switched on after 90% of the theoretical traveling time 
of the bang-bang control. The PD control gains were determined through 
optimization techniques in which the settling time of the system is minimized. It is 
believed that this technique can imitate the trial and error method used in [6,8] and 
insure best performance of the strategy. The gain k and pare found to be 38.4025 
and 134.5193, respectively. Fig. l3 shows the displacement responses for [6,8] and 
the method of optimal gains [5]. For comparison, the responses for time-optimal 
PD-control algorithms (double lines and single line) are shown in the same Figure. 
The 2% settling times for these algorithms are presented in Table 2. The best 
settling time is that of the proposed method (double lines). The worst is that of the 
optimal gains [5]. The proposed method (single line) comes in second place, while 
the strategy of [6,8] comes in third place. It is to be noted that trying different 
switching time between the two controls used in [6,8] have shown similar results. 
And, only our proposed algorithms responses have shown no overshoot. Fig. 14 
shows the displacement response for time-optimal PD control (double lines) for 
different values of parametric uncertainty of b0 . For 10% to 30% uncertainty in bo, 
the increase in settling time is only 5% to 18%. This indicates the robustness of the 

proposed method. 
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Table 2 Settling times of different approaches 

Proposed method Proposed method Approach in Approach in 
(double lines) (single line) [6,8] [5] 

2%t. 0.1188 0.1309 0.1349 0.4146 
(sec.) 

The out performance of the proposed method, time-optimal PD control, over the 
strategy of [6,8] is based not only on settling time comparison but also on the 
robustness of the algorithm. In [6,8], the gains are determined using trial and error 
method for every joint rotational angle. This is of course impractical. On the other 
hand, the proposed algorithm computes the best gains for each angle directly using 
closed form equations. 

CONCLUSION 

To develop time-optimal PD algorithm for flexible robot we started by 
evaluating the algorithm developed in [9] to compute time-optimal PD control 
gains for controlling a second order servo system with input constrains (rigid 
system). Gains for minimizing settling time for specified settling tolerances (2%, 
1%, 0.5%) were obtained. Results showed that the gains for time-optimal PD 
control can be considered as optimal for minimum settling time provided that the 
allowable tolerance is very small. Successful optimization results motivated 
deriving time-optimal PD control algorithms for flexible robot. The first algorithm 
uses two PD tuning formulas. The first formula is applied from the initial to 
midpoint position. The second formula is applied from the midpoint to final 
position. The PD gain ratios for both formulas depend on the initial conditions of 
motion. An approximation is made to replace the two tuning formulas with one. 
Both, the new time-optimal PD control and its approximation was applied to a 
flexible single robot arm. The responses of the new algorithms were found almost 
identical to that of time-optimal control (multi-switch bang-bang control). The 
response of the approximation is slightly less efficient. The new algorithms were 
compared to the strategies given by [5] and [6,8]. The optimal gains method 
presented in [5] yielded large overshoot and settling time. This is due to the fact 
that the method is optimal only in the case of unbounded control input, which is not 
practical. . The method of [6,8] yielded larger settling time than the proposed 
method in the presence of modeling uncertainties of 5%. Furthermore, the 
proposed methods show relative low settling time even in the presence of modeling 
uncertainties up to 30%, which indicates its robustness. Results obtained showed 
that the new algorithm out performed the other ones. 
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