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ABSTRACT 

In this paper modeling, selection and optimization of fuzzy rules for 
multivariable feedback process control and decision making systems are 
developed and discussed. A general model for multivariable fuzzy rules is 
derived and sets of fuzzy parameters are assigned to the consequents of each 
rule. A genetic algorithm is used to optimize these parameters. A genetic 
algorithm search technique is also developed for the selection of the sub-set of 
appropriate rules from a larger theoretically possible set. The procedure is 
implemented on a multivariable dynamic model and results of extensive 
simulation studies are presented to demonstrate a satisfactory performance of 
the proposed approach. 

INTRODUCTION 

The difficulty in designing fuzzy decision making for multivariable feedback 
control systems lies in the existence of a large number of rules with complex 
structure (1). When the number of inputs to a multi-input multi-output system is 
increased, the number of rules required to cover all possible modes of system 
behavior will be increased accordingly. The complexity of the set of the 
required rules will also increase, because the antecedents of each rule require 
more connective operators. The increased number of outputs does·not increase 
the number of rules explicitly, but to be able to control these outputs, it is 
required to introduce appropriate inputs with expanded antecedents. Therefore, 
one of the main tasks in designing any fuzzy decision making system is the 
generation of fuzzy rules and construction of the fuzzy rule base in an efficient 
and optimum manner (2). The rule base, essentially, describes the normal 
operation of the system from the view point of an expert operator. Several 
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procedures have been suggested for generation of the fuzzy rules (3-6). Some of 
the more widely used methods are: 
(a) The human operator's experience. 
(b) Fuzzy modeling of the process, using fuzzy implications concerned with 

inputs, state variables and outputs. 
(c) Self-organizing control, based on meta-rules from which the control rules 

can be created or changed. 
(d) Modeling the operator's control action. 
(e) Simulation of the mathematical model. 
(f) The physical model. 
(g) Neural networks. 
(h) Learning from examples. 

However, extraction of the appropriate rules describing the behavior of a 
system, from an experienced expert or any other methods is a difficult task 
and may not be practical or readily achievable in many cases. 

Recently extensive research has focused on the field of soft computing and 
in particular many applications of Genetic Algorithms (GAs) in designing and 
optimizing fuzzy systems have been reported (7). Implementation of the genetic 
algorithms is conceptually straightforward and is basically an iterative search 
procedure inspired by the laws of natural selection and genetics. The object of 
the search by GA is to find an optimum fitness function. A "population" of 
possible values called individuals is considered over the given search space, and 
at each iteration a new population is generated. The new generation comprises 
individuals which are closer to the optimum value of the fitness function. The 
generation of these new populations is based on the evaluation of the fitness 
values and selection of the better fitted individuals. Using the genetic operators 
such as mutation, the selected individuals are combined to form a new 
generation, and as the algorithm successively iterates, the selected individuals 
normally tend towards the optimum fitness function. The GAs have been 
successfully applied in many diverse area, such as search, function optimization, 
scheduling, vision, control and machine learning (8-11). Efficient applications of 
GAs in conjunction with fuzzy logic controller design have been reported by 
several authors (10,14). In (10) a three-phase framework for learning dynamic 
control systems has been studied and a genetic algorithm is applied to drive 
control rules as decision tables. In the second phase the rules are automatically 
transformed into a comprehensive form and in the last stage the final rules are 
tuned via manipulation of the fuzzy relational matrix. Park and Kandel (14) show 
that the performance of fuzzy control system may be improved if the fuzzy 
reasoning model is supplemented by a genetic-based learning mechanism. They 
employed a GAs based procedure to optimize the set of parameters for the fuzzy 
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reasoning model based either on their initial subjective selection or on a random 
selection. The main attention in this research was, therefore, paid to the 
selection of sets of optimized rules subject to satisfaction of specified 
performance criteria. GAs are applied in two distinct stages. In the first stage a 
number of effective and efficient rules is selected from a larger theoretically 
possible set and in the second stage the parameters of the selected rules are 
optimized by tuning the appropriate membership functions. 

In this paper modeling, selection and optimization of fuzzy rules for 
multivariable feedback process control and decision making systems are 
developed and discussed. A general model for multivariable fuzzy rules is 
derived and sets of fuzzy parameters are assigned to the consequents of each 
rule. A genetic algorithm is used to optimize these parameters. A genetic 
algorithm search technique is also developed for the selection of the sub-set of 
the appropriate rules from a larger theoretically possible set. The procedure is 
implemented on a multivariable dynamic model and results of extensive 
simulation studies are presented to demonstrate a satisfactory performance of the 
proposed approach. 

PROBLEM FORMULATION 

A fuzzy system generally consists of three major components as shown in 
figure (1). 

Fig. 1. Fuzzy logic control system configuration 

The fuzzification and defuzzification procedure are fully described 
elsewhere (2) and for the purpose of brevity will not be discussed in this work. 
It is the inference engine which is the main concern of this work. The inference 
engine has an expert internal structure and is the knowledge base of the fuzzy 
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logic controller. It consists of two distinct parts, the rule base and the database. 
One of the most important tasks in designing fuzzy logic control systems is to 
construct the knowledge base. 

Consider a multivariable fuzzy decision making system with n inputs and m 
outputs. The processes of fuzzification assigns one or more fuzzy sets 
(represented by the appropriate membership functions) to each fuzzy input Xi, 
such that 

x1 cx1, i=1,2, ••• ,n 
1• 

xicOxi 
j=l 

(1) 

where xi j is a membership function and li is the number of assigned fuzzy sets 

to the fuzzy input Xi. Theoretically, the maximum number of applicable rules is 
given as. 

(2) 

The formulation for the determination of the antecedents of each rule, 
represented by Eq.(2) is posed as a search problem in the space Sa, defined as 

(3) 

In a similar manner, each fuzzy output is represented by the union of fuzzy sets, 
assigned to the output variables, that is 

y i c Y1,i = 1, 2 , ••• ,m 

Yi c lJyi 
j=l 

(4) 

Hence the identification of the consequents of each rule may be viewed as a 
search problem in the space Sc, defined as; 

(5) 

The maximum number of possible candidates for the consequent of each rule is 
given as follows; 
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(6) 

It can be deduced that ra * rc different possibilities exist for formation of a rule. 
The construction of the fuzzy rule base may be posed as the problem of fmding 
a sub-set of r optimum rules from the larger set of ra* rc possible rules. The 
combinatory number of conditions is given by 

t= ra.rc 
t! r-1 • 

v= = nct-J. 
(t-r)! Ltl 

(7) 

where v is the number ofiFffHEN conditions. 

The problems formulated and posed above are solved in two steps. In the 
first step, each rule is modeled by a set of parameters representing the fuzzy 
association of inputs with outputs and GAs are used for optimization of these 
parameters. The second step is aimed at the selection of a set of rules based on 
the determination of the proper consequents related to the optimized antecedents 
obtained in first step. The GA is employed in the second step to select that set of 
fuzzy rules which satisfies the defined fitness functions related to the time 
domain performance of the system. 

Although there are a variety of possible approaches to the development of 
control systems performance objectives, the first line of approach is generally to 
consider the time domain specifications. The reasons for this choice are many, 
but the most pervasive ones are that in practice the designer is mainly concerned 
with the transient response and its robustness, and the simplicity of automated 
calculation of the parameters in the context of numerical search techniques. 
Specifically, time domain based analysis assumes that the functional form of the 
required decision boundaries for the parameters can be selected a priori. This 
differs from the powerful graphical frequency domain performance which 
describes the desired design boundaries by the shapes of the frequency response 
displays. 

In time domain a numerical synthesis procedure can be formulated as a set 
of inequalities: 

i=l,2, ... m 
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where Ci is a set of real numbers, R denotes a vector [r1> ... ,rn] and Fi are 
functions of R, m is the number of constrained specifications and n is the total 
number of rules. The component of R represent the fuzzy rules and the above 
inequalities represent time domain specifications. The dynamic behavior of the 
process can be specified by a set of time functions f(t) for 0 < f(t) < oo, where 
f(t) is chosen in this work to represent such figures of merit as system rise 
time, settling time, percentage overshoot and steady state error. 

MODELING TilE FUZZY RULES 

Design and implementation of the rule base normally involves two basic 
problems. One is the generation of an appropriate and effective set of rules and 
the second is to attempt to keep the number of these rules within a reasonable 
and acceptable bound. The number of rules will increase considerably with the 
number of inputs as well as the number of the labels of the membership 
functions for each fuzzy variables. One the main objectives of any fuzzy expert 
system is to replace or assist the human expert operator. Due to the nonlinear 
and time varying behavior and other uncertainties in a practical control system, 
the control tasks may be so complex that either it can not be modeled by the 
conventional mathematical method or the derived model is so complicated that 
it can hardly be used. Therefore, when the controller model does not consist of 
crisply defined mathematical statements and relations, then traditional 
mathematical methods can not be applied directly and fuzzy algorithms that can 
deal with uncertain and incomplete information (fuzzy entities) may be 
employed. One of the widely used method of fuzzy knowledge representation is 
the IF/THEN rules. 

Consider the following simple fuzzy rule: 

IF X THEN y (8) 

where x and y are both fuzzy sets defined on their respective universes of 
discourse. The above rule is the representation of a fuzzy relation between x 
and y defined on the product of x and y. Fuzzy relations in the same or different 
product spaces can be combined with each other by the operation 
"composition". Different compositions have been suggested which differ in their 
results and also with respect to their mathematical properties. One of the most 
widely used is the compositional rule of inference or the Max-Min (OR-AND 
operation) which has been suggested by Zadeh (12) and may conveniently be 
used for modeling the fuzzy rule as follows: 
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R=xoy (9) 

Where R is the fuzzy relational matrix and o denotes composition. The model 
identification of a rule can be performed by finding the corresponding relational 
matrix that relates every fuzzy output y to a fuzzy input x, using the above 
compositional rule of inference. 

In general the relationship between two fuzzy variables may be expressed 
as: 

y = x~cl> (10) 

where y the fuzzy relational matrix, <1> is a fuzzy parameter and ll is a nonlinear 
fuzzy operator that relates fuzzy output y to fuzzy input x. Eq.(lO) is the general 
form of Eq. (9), extended to complex and multivariable systems. Based on the 
choice of the membership functions, several different characteristics can be 
assumed for <1> and fl. In fact, determination of <1> is viewed as an optimization 
process based on a set of performance indices. Fuzzy operator ll is also 
determined according to the type and structure of <1>. Generally, three structures 
for <1> maybe defined (13) as follows. 

a) Singleton 

When is <1> defined as a fuzzy set with a membership function associated 
with only a single membership grade denoted by A., then the fuzzy operator ll 
will take the form of a simple minimum (MIN operator) such that; 

y=X/\A (11) 

J..ly(y) = MIN(J..lx(x) ,A.) (12) 

where flx and fly are the membership grades of x and y, respectively and 1\ 

denotes the MIN operator. 

b) Fuzzy Set 

When <1> is defined as a fuzzy set, that is, a set of ordered pairs defined on 
some universe of discourse denoted by A and represented by a membership 
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function or a set of linguistic variables (labels), then the fuzzy operator ~ may 
also be defined as a simple minimum operator such that: 

y=x/\A (13) 

flv (y) = MIN(flx(x), flA (A)) 
(14) 

where flA (A) is the membership grades of A. 

c) Fuzzy Relation Matrix 

When Cl> is defmed as a fuzzy relation matrix denoted by R, that is, Cl> is 
itself a fuzzy relation, then~ is defined as Max-Min operator, giving; 

y=xoR (15) 

fly = MAX{MIN[flx(x),flxxv(R)]} (16) 

DESIGN :METHOD AND CO:MPUTATIONAL PROCEDURES 

The techniques for the selection of the optimized fuzzy rules consist of the 
following algorithms and comprise the following steps; 

Step 1: General form of the multivariable fuzzy rules with n inputs and m 
outputs is considered; 

n m 

IF A(xJ THEN A(Yj) 
i=l j=l 

where X and Y are fuzzy vectors given as; 

X= [x1,x2····•xnJ' 

Y = [Y1.Y2·····Ym1' 

(17) 

(18) 

and ' denotes transposition. Each of the multivariable rules in Eq.(17) may be 
expressed as: 
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n 
IF 1\ (xi) TiffiN Y =<I>~ 

i=l 
(19) 

The model of the consequent part of the above rules is employed for the 
purpose of the optimum rule selection. The structure and dimension of <I> 
depends on the number of inputs and outputs of the controller and in general is 
expressed in matrix form as 

(20) 

Consequently; 

(21) 

At this stage, +u •... , +mn are evaluated and the genetic algorithms are 
implemented for the parameter optimization. The following three characteristics 
are considered for the determination of the parameters of +11, ...• +mn· 

a) Singleton type: If xi c A and y j c B , where A and B are the 

universes of discourse assigned to input xi and output Yj respectively, then we 
have 

n 

Y j = v(cl>ij "xJ 
i=l 

where v denote the MAX operation. 

(22) 

(23) 

b) Fuzzy-set: In this case, +ij is represented by a membership function 
giving the compatibility degree of input Xi and output Yj· Fuzzy set +ij is 
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defined on the related universe of discourse C. Therefore, the output Yj may 
be obtained by Eq.(22) and 

(24) 

c) Fuzzy-relation: In this case, cl>ij is defined as a fuzzy relational matrix, 
defined on the Cartesian product of A x B . 

(25) 

Where q is the number of discrete elements of the universe of discourse. 
Similarly the output Yj is obtained by the Eq. (22) and 

(26) 

Therefore, in each of the above cases, different criteria will be optimized by 
GAs. In first case only the number of rules is optimized, since the membership 
function is a singleton. In case (b) the number of rules as well as the parameters 
of the membership function are optimized and so on. Table 1 shows the number 
of parameters to be optimized by GAs. 

Table 1. Number of Parameters to be Optimized 

TYPE NUMBER OF PARAMETERS 

SINGLETON n*m 
FUZZY-SET n* m * q 
FUZZY-RELATION n* m* q * q 

Step 2: The genetic algorithm is implemented for the purpose of determining 
the optimized values of the parameters cj> 11 to cl>mn. The length of each string 
depends on the choice of the characteristics cj> 11 to cl>mn and includes all 
parameters, in each case, as shown in Table 2 below. 
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Table 2. Structure ofEach String 

<l>mn 

Step 3: In this step another GA is employed to determine the antecedents and 
select the number of optimum rules. In this case each string consists of a number 
of fuzzy rules with optimized parameters. The length of each string depends on 
the desired and heuristically determined number of fuzzy rules for the 
completion of the rule base. Table 3 shows the structure of each string when s 
optimum fuzzy rules are considered. Figure(2) shows the flow diagram of 
computational procedures. 

Table 3. Structure of Each String of the Fuzzy Rules 

Antecedent 1 Antecedent 2 

Model of Consequent 

Genetic Algorithm 

Parameters Identification 

Model of Fuzzy Rule 

Genetic Algorithm 

Rules Identification 

INPUT 1 I· . ., INPUTn I 
Antecedent r 

Fig. 2. Block diagram of the computational procedure 

SIMULATION RESULTS 

a) A Double Tank Reactor 

In this example the multivariable system under study consists of two 
interconnected tank reactors as shown in figure (3). The inputs to the system are 
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flow qil and qi2 and the output values are represented by Qol and Qo2, 
respectively. The tanks are linked by the connecting pipe, the flow through 
which is dependent on the head difference and the pipe characteristics. A laminar 
flow is assumed and the other dimensions are identical. The nonlinear 
mathematical model describing the system is given by the following differential 
equations 

(27) 

(28) 

Fig. 3. The schematic diagram of the double tank reactor 

where A 1, A2 are the cross sectional area of the tanks, a 1, a2 are the cross 
sectional area of the output valves, m is the resistance of the connecting pipe, g 
is the acceleration due to gravity and h 1, h2 are the liquid levels in the tanks. 
Control actions are applied to Q01 and Q02 which are output flows of the 

tanks. The control objective is to keep the liquid levels in the tanks at the desired 
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set points. For the control system under study, there are four inputs to the Fuzzy 
Logic Controller, namely, ht. h2, h't. h'2 and two outputs qol• Q0 2.The block 

diagram for the control systems configuration is shown in figure (4). The Fuzzy 
Logic Controller (FLC) acts indirectly on the interactive components G12 and 
G21. 

F 

L 

c 

Fig. 4. Block diagram for the process control systems 

The multivariable fuzzy controller is designed for the above dynamic 
system with the following specifications. Four fuzzy inputs, two fuzzy outputs 
and five labels assigned to each variable as shown in figure (5). 

~ 1 ~N~MT-~~--~----~~~= . ... 
,.c; 

~ 8.8 
u 

-'! 

I 8.6 
1: 

8.4 

8.2 

8L-L-...L.J'---------'-..I..-l.-L..:'---------L...L--1-_.J 

-1 -8.5 8 8.5 1 

Universe of Discourse 

Fig. S. The membership functions assigned to fuzzy variables 
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The maximum number of possible rules is obtained as: 

t = r •. rc = 15,625 

If we select r number of rules from the total of t rules, then the number of 
possible cases is given by Eq. (7), for example for r = 20 we have; 

V = 15,625! = ti: (15,625- i) =7.4 X 1083 

(15,625- 20)! i=O 

In order to initialize the search, the parameters of GA such as population 
size, mutation rate, and crossover rate have to be defined. However, the theory 
behind parameter setting for a GA gives little guidance for their proper selection 
(15, 16). The mutation and crossover rate are the source of exploration and the 
population size is the source of exploitation in the search procedures. Setting the 
mutation rate low allows the algorithm to exploit a particular hyperplanes. 
Setting the mutation rate high allows the algorithm to explore several different 
hyperplanes. Crossover is significantly effected by the exploration-exploitation 
tradeoff. Determination of the optimal population size is another problem. If the 
population size is too small then GA may have an improperly constrained search 
space. If the population size is too large, an inordinate amount of time will be 
needed to perform all the evaluations. Therefore, the difficulty is in seeking the 
balance between exploration and exploitation and more often setting of the 
parameters is heuristic and depends on the discretion of the designer for the 
problem at hand. In a recent study, Schaffer (16), through extensive research, 
found the best parameter settings for on-line performance to be: 

• population size = 20-30 

• crossover rate = 0.75-0.95 

• mutation rate = 0.005-0.01 

For our problem, which is not an on-line problem, the size of population 
need not be unduly small. Based on several experiments, the number of 
generations was set to 20 and parameters of the GA for the optimization 
procedure of the singletons in the equation (23) were chosen as follows: 
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• population size = 60 

• crossover rate = 0.9 

• mutation rate = 0.05 

The optimized singleton values calculated by GA are 

[
.800 

F= 
.0 

.533 .400 .200 l 

.333 .267 1.000 

Again the GA was run for 20 generations and the parameters of GAs for the 
determination of the antecedents, based on the choice of 15 rules are taken as: 

• population size = 60 

• crossover rate = 0.80 

• mutation rate = 0.03 

The design and construction of the fuzzy rule base can now be completed. 
The set of final rules obtained by the application of GA is given in figure (6). 
The following abbreviations have been used in the rule base of the controller. 

LEVEL 1 = h 1 Height of liquid in tank 1 

LEVEL 2 = h2 Height of liquid in tank 2 

dLEVEL 1 = hI 1 derivative of h 1 

dLEVEL 2 = hI 2 derivative of h2 

VALVE 1 = qo 1 output flow from tank 1 

VALVE 2 = qo2 output flow from tank 2 

NS = Negative Small 

NM = Negative Medium 

z =Zero 

PS = Positive Small 

PM = Positive Medium. 
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IF Levell is NM AND dLevell is PM AND Level2 is NS AND dLevel2 is NS, 

THEN valvel is Z AND valve2 is Z ; ALSO 

IF Levell is NS AND dLevell is PM AND Level2 is PS AND dLevel2 is NM, 

THEN valvel is Z AND valve2 is NS; ALSO 

IF Levell is Z AND dLevell is NS AND Level2 is PS AND dLevel2 is PM, 

THEN valvel is Z AND valve2 is PS; ALSO 

IF Levell is Z AND dLevell is Z AND Level2 is PM AND dLevel2 is PM, 

THEN valvel is PS AND valve2 is PM; ALSO 

IF Levell is Z AND dLevell is PS AND Level2 is NS AND dLevel2 is NS, 

THEN valvel is Z AND valve2 is Z ; ALSO 

IF Levell is Z AND dLevell is PS AND Level2 is PM AND dLevel2 is NM, 

THEN valvel is PS AND valve2 is NS; ALSO 

IF Levell is Z AND dLevell is PM AND Level2 is PM AND dLevel2 is Z , 

THEN valvel is PS AND valve2 is PS; ALSO 

IF Levell is PS AND dLevell is NM AND Level2 is PM AND dLevel2 is Z , 

THEN valvel is Z AND valve2 is Z ; ALSO 

IF Levell is PS AND dLevell is Z AND Level2 is NS AND dLevel2 is PM, 

THEN valvel is Z AND valve2 is PS; ALSO 

IF Levell is PS AND dLevell is PS AND Level2 is PS AND dLevel2 is PS, 

THEN valvel is PS AND valve2 is PS; ALSO 

IF Levell is PS AND dLevell is PS AND Level2 is PM AND dLevel2 is PM, 

THEN valvel is PS AND valve2 is PM; ALSO 

IF Levell is PS AND dLevell is PM AND Level2 is PS AND dLevel2 is PM, 

THEN valvel is PS AND valve2 is PM; ALSO 

IF Levell is PM AND dLevell is NM AND Level2 is NM AND dLevel2 is PM, 

THEN valvel is Z AND valve2 is PS; ALSO 

IF Levell is PM AND dLevell is NS AND Level2 is PM AND dLevel2 is PS, 

THEN valvel is PS AND valve2 is PS; ALSO 

IF Levell is PM AND dLevell is Z AND Level2 is NM AND dLevel2 is NS, 

THEN valvel is Z AND valve2 is NS . 

Fig. 6. Generated fuzzy rules 
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The time response of the control system based on the resulting fuzzy rules is 
shown in figure (7), for different set points of tank 1 and tank 2. 

8.25 

First Tank 

8.2 

Second Tank 

~ 8.15 
~ -.. ,. .. .... 8.1 

8.85 

8 
8 188 288 388 488 588 688 

Ti'"e (Sec.) 

Fig. 7. System time response for the selected rules 

b) The Cart-Pole System 

In the second case study, the cart-pole control problem is considered. 
Besides being a standard benchmark problem for classical and alternative control 
approaches, it has much in common with a variety of tasks of greater practical 
importance, such as two legged walking and satellite attitude control (17). Figure 
(8) shows the schematic diagram of the system and the highly nonlinear 
mathematical model is given as: 

.. gsin9 + cos9[ -f- m I 92sin9 + ~esgn(x)] I (me + m)- ~Pe I ml 
9= ~~ 

l[±- (mcos29) I (me + m)] 
3 

.. f + m I [92 sinS- Scos9]- ~c sgn(x) 
X= 0~ 

me 
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x=O 

Fig. 8. Schematic diagram of the cart-pole systems 

The state variables are chosen as x and x , the position and the velocity of 
the cart and e ' 8 angular position and angular velocity of the pole with respect 
to vertical axis. The input to the system is the control force U(t). The objective 
is to keep the pole balanced while the cart is controlled to move in a prescribed 
range. The constants in equations (29) and (30) are: g the acceleration due to 
gravity, me and m are the masses of cart and pole respectively, I is the length 

of the pole, flc is the coefficient of friction between the cart and the track and 

fl p is the coefficient of friction for the pole at the hinge. It is assumed that for 

I x I > 2.4 m and I or I 9 I > 12°, a failure has occurred. It is also assumed that 

the mathematical model of the system is not known to the control configuration, 
but a one dimensional vector representing the states of the system is available at 
the required instants. The fuzzy rules are derived based on the triangular 
membership functions for the state variables as well as the value of "goodness" 
of the control action. In order to obtain a satisfactory resolution and prevent 
possible oscillation, nine labels are considered for the state variables as shown 
in figure (9a). 

The fuzzy labels for the state variable are; NL(Negative 
Large),NM(Negative Medium), NS(Negative Small), NVS(Negative Very 
Small), Zero(ZE), PSV(Positive Very Small), PS(Positive Small), PM(Positive 
Medium), LP(Positive Large). In the case of the "goodness" value, four labels 
VB.(Very Bad), BD(BaD), GD(GooD), and VG(Very Good), as shown in figure 
(9b) are used. 
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-~Y<-~--~-
NS PS PM 

(a) State variables (b) The "goodness value" 

F1g. 9. Membership functions 

For this application, the rule base constructed in conjunction with GAs 
consists of eighteen rules, twelve of which are related to the control actions for 
balancing the pole. These are shown in figure (10) in the form of fuzzy 
associative memory. The other six are related to the positioning of the cart in 
the prescribed range and are shown in figure (11). 

NL NS NVS PVS PS PL 

NM VB BD GD 

BD VG GD 
. NS 

ZE e 
PS GD VG BD 

PM GD BD VB 

e 
F1g. 10. Fuzzy rules for controlling the pole 

NL NS PS PL 

PS GD VG NM VG 

ca 
PM VG NS VG GD 

X X 

F1g. 11. Fuzzy rules for controlling the cart 
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where ce denotes the change in e and is calculated as: 

The system time response for the nominal values of the cart-pole physical 
parameters used (the length of the pole 1=0.5 meter, weight of the pole m=0.1 
kg, weight of the cart m1 =2.0 kg) are shown in figure (12). It is observed that 

the pole is balanced and the cart is controlled within the prescribed range. 

8 

4 

2100 

Time (sec.) 

-4 

Fig. 12a. Time response of the cart-pole systems: The pole's angle 

8 

4 

-4 

Fig. 12b. Time response of the cart-pole systems: The cart's position 
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8 

4 

~ 
~ 
e 0 

21 
c: 

0 
<...:> 

-4 

Fig. 12c. Time response of the cart-pole systems: Control force 

In order to investigate the robustness of the designed fuzzy controller, 
extensive simulation studies were carried out for different values of the physical 
parameters of the cart-pole systems and in all cases acceptable results have been 
obtained. 

CONCLUSIONS 

A new method has been presented for the optimization and selection of the 
number of the fuzzy rules. A general model for the multi-dimensional fuzzy 
rules is derived and genetic algorithms are employed for the purpose of 
searching for optimum and appropriate rules. The salient features of the 
proposed approach are that no information about the behavior of the control 
system is required and the mathematical model of the system is not known to 
the controller. The procedure also provides the capability of finding certain 
desired number of rules in an optimized manner and is applicable to a wide 
range of systems and processes. In order to demonstrate the effectiveness of the 
proposed technique, it was implemented on a multivariable control systems in 
which the theoretically large number of possible rules is a disadvantage for 
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design of the fuzzy controllers. Excellent results have been obtained in that only 
a set of 15 optimum rules out of a total of a very large number of possible rules, 
result in a good controller performance. 
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