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ABSTRACT 

This paper presents a solution algorithm for solving the single machine 
early/tardy problem having fuzzy parameters in the constraints. There are 
several cost structures: job-independent, job-dependent and symmetric, and 
job-dependent and asymmetric. The last problem is shown to be NP-hard and 
it will be studied here. Some basic stability notions are defined and 
characterized for the problem of concern. These notions are the set of feasible 
parameters, the solvability set and the stability set of the first kind. A 
parametric study is carried out for the problem of concern. Finally, an 
illustrative numerical example is given to clarify. the theory and the solution 
algorithm. 

KEY WORDS Fuzzy parameters, Single machine, Early/Tardy jobs, a-level set, NP­
hard. 
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1. INTRODUCTION 

Consider an n job single machine early/tardy problem. Let each job have a 
processing time, a due date, an earliness weight, and a tardiness weight (penalty 
cost). In a given schedule, let each job be penalized by the fixed individual 
earliness (tardiness) weight, if it is completed prior to (after) its due date. A 
schedule is sought that will minimize the total cost incurred for all penalized jobs. 
There are many applications to such a cost structure, e.g. in chemical or hi-tech 
industries, where often parts need to be early at specific times in order to meeting 
certain required conditions [5]. 

The single machine early/tardy problem (SMETP) is NP-hard and denoted by 
nil/lET problem. In this class of problems, some of them are polynomial and some 
other are known to be NP-hard. Hall and Posner [2] studied the minimization of 
weighted deviation of completion times when the common due date is not early 
enough to constrain the schedule and Hallet al [3] studied the same problem when 
the common due date is restrictive. Both are NP-hard problems. Kahlbacher [4] 
showed that some of the properties valid for these problems still hold for equal 
slack due date rule problems. Moore developed the problem of minimizing the 
number of tardy jobs on a single machine and introduce an O(nlogn) algorithm to 
solve the problem [7]. Moore's problems have been extensively studied and clearly 
have numerous real-life applications in [6]. 

This paper is organized as follows: In section 2, some basic definitions on fuzzy 
set theory are introduced. In section 3, we formulate the SMETP having the 
processing times pj as fuzzy parameters (FSMETP). Section 4 is devoted to a 
parametric study on the FSMETP. In section 5, we propose a solution algorithm to 
solve the problem of concern. In section 6, an illustrative numerical example is 
given to clarify the theory and the solution algorithm. Finally, section 7 contains 
the conclusions. 

2. Fuzzy Concepts 

L. A. Zadeh advanced the fuzzy theory at the university of California in 1965. 
The theory proposes a mathematical technique for dealing with imprecise concepts 
and problems that have many possible solutions. 

The concept of fuzzy mathematical programming on a general level was first 
proposed by Tanaka et al [9] in the framework of the fuzzy decision of Bellman 
and Zadeh [10]. Now, we present some necessary definitions [1]. 
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DEFINITION 1 

A real fuzzy number a is a fuzzy subset of the real line R with membership 

function 1-ta satisfies the following conditions: 

(1) I-ta is a continuous mapping from R to the closed interval [0,1]. 

(2) 1-ta (a)= 0 \;fa E (-oo, ai]. 

(3) 1-ta is strictly increasing and continuous on [a~> a2]. 

(4) 1-ta (a)= 1 V a E [a2, a3]. 

(5) 1-ta (a) is strictly decreasing and continuous on [a3, a4]. 

(6) 1-ta (a) = 0 V a E [a4, +oo). 

where a~> a2, a3 and a4 are real numbers, and the fuzzy number is denoted by 
a = [aj, a2, a3, a4]. 

DEFINITION 2 

The fuzzy number a= [a~> a2, a3, a4] is a trapezoidal number, denoted by [a~> 
a2, a3, a4], its membership function 1-ta is given by (see Fig.1): 

0, a~a1 , 

( a~a, r a
1 
~a~a2 , 1---

a -a 
I 2 

1-La(a) = 1, a
2 
~a~a3 , 

( a~a, r a
3 
~a~a4 , 1---

a -a 
4 3 

0, otherwise 
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Jl_(a) 
a 

1 

a 

Fig.l Membership function of a fuzzy number a. 

DEFINITION 3 

The a-level set of the fuzzy number a is defined as the ordinary set La (a) for 

which the degree of their membership function exceeds the level aE [0,1]: 

3. EARLY/TARDY SCHEDULING PROBLEM HAVING FUZZY 
PARAMETERS IN THE CONSTRAINTS 

Lann and Mosheiov et al [5] introduced an integer programming formulation for 
the problem of concern in the deterministic case. We will extend this formulation 
where the processing times are fuzzy parameters. 

Notations 

We use the following notations: 
n =number of jobs, 
p 1 =fuzzy processing time of job j, j =l, ... ,n, 
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Dj = due date of job j, j =1, ... ,n, 
Yj =starting time of job j, j =1, ... ,n, 

A~ = earliness weight of job j, 

·A~ = tardiness weight of job j, 

X E ={I if job j is early 

j =1, ... ,n, 

j =1, ... ,n, 

1 0 otherwise 

X -T {1 
j- 0 

if job j is tardy 

otherwise 

Let M be a large number. The problem of consideration is the following fuzzy 
single machine early/tardy problem (FSMETP): 

n 
(FSMETP): min L 

j = 1 

Subject to 

(A EX~ +AT.X~) 
j 1 1 1 

y ~y + j5 
j j-1 j-1 

MX ~ ~ D . - (Y. + j5 . ) 
1 1 1 1 

MX ~ ~ (Y. + j5 . ) - D . 
1 1 1 1 

X~,X~ E {0, 1} 
1 1 

y ~0 
j 

j=2, ... ,n 

j=l, ... ,n 

j=l, ... ,n 

j=l, ... ,n 

j=l, ... ,n 

where p J, j = 1, ... , n, represent fuzzy parameters involved in the constraints 

where their membership functions are J..L P j • For a certain degree a together with 

the concept of a-level set of the fuzzy numbers p J , therefore problem (FSMETP) 

can be understood as the following nonfuzzy single machine early/tardy problem 
(P1): 

n 

mm L 
j = 1 

Subject to 

(A EX~ +AT_ X~) 
j 1 1 1 
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Y. ~ Y. + p. j = 2, ... , n 
1 1-1 1-1 

MX~~D.-(Y.+p.) j=l, ... ,n 
1 1 1 1 

MX~~ (Y.+p.)-D. j=l, ... ,n 
1 1 1 1 

0 :::; X~ :::; 1, 0 :::; X~ :::; 1 , 
1 1 

j=l, ... ,n 

piE La(Pj) 

y ~0 
j 

j = 1, ... ,n, 

j=l, ... ,n 

where La (p J) are the a-level set of the fuzzy numbers p J . The above problem 

can be written in the following equivalent form: 

(Pz): 
n 

min L 
j = 1 

Subject to 
y ~y +p 

j j-1 j-1 

MX ~ ~ D . - (Y. + p . ) 
1 1 1 1 

MX ~ ~ (Y. + p . ) - D . 
1 1 1 1 

0 :::; X E :::; 1, 0 :::; X~ :::; 1, 
1 1 

h(O)<p.<H\0) 
1 - 1- 1, 

y ~0 
j 

j = 2, ... , n 

j=l, ... ,n 

j=l, ... ,n 

j=l, ... ,n 

j = 1, ... ,n, 

j=l, ... ,n 

It should be noted that the constraint p 1 E La (p) has been replaced by the 

constraint h )0
) :::; p 

1 
:::; H )0

) , where h ~O) and H (O) are lower and upper bounds on 
1 1 

A Parametric Study on Problem (P2) 

Problem (P2) can be rewritten in the following parametric form: 
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n 

mm :L 
j = 1 

Subject to 
Y -Y - p ~ 0 

j j-1 j-l 

MX ~ - D . + (Y. + p . ) ~ 0 
1 1 1 1 

j=2, ... ,n 

j=l, ... , n 

MX~- (Y.+p.)+D.~O j=l, ... ,n 
1 1 1 1 

X~"?.O, 
1 

X~"?.O, 
1 

p j - hj "?. 0, 

y ~0 
j 

1-X~ "?.0 ,~ 
1 

1-X~"?.O, 
1 

H j - p j "?. 0, 

j=l, ... ,n 

j=l, ... ,n 

j = 1, ... ,n 

j=l, ... ,n 

where h J and H J, j = 1, ... , n are assumed to be parameters rather than constants. 

E E Let Gj (Y, p) = .lj- lJ-1 - pj, Hj(Y, p, D, X. ) = M X . - Dj + .lj + pj, Qj (Y, p, D, 
J J 

X~) = M X T + Dj - .lj - pj, and Zj (Y) = .lj. Let X(h, H) denotes the decision space 
J J 

of problem (P3), defined by: 

X(h, H) ={(Y, XE, X~, p)ER4ni Gj (Y, p) "?. 0, Hj(Y, p, X E)"?. 0, Qj (Y, p, XT) "?. 
J J J J 

E E T XT 0,-0 (Y) "?. 0, X. "?. 0, 1- X. "?. 0, X."?. 0, 1- . "?. 0, Pr hj "?. 0, Hr Pj 
J J J J 

"?. 0, j = 1, ... , n }. 

Some Basic Stability Notions for the Problem (P3) 

In what follows, we give the definitions of some basic stability notions for the 
problem (P3). These notions are the set of feasible parameters, the solvability set, 
and the stability set of the first kind, (see [8]). 

The set of feasible parameters 
The set of feasible parameters of the problem (P3), which is denoted by U, is 

defined by: 
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U = { ( h, H) E R2
n I X(h, H) =,t: <!>}. 

The solvability set 
The solvability set of the problem (P3), which is denoted by V, is defined by: 

V = { (h, H) E U I problem (P3) has a-optimal solutions}. 

The stability set of the first kind 

Suppose that h *, H* E V with a corresponding a- optimal solution (Y*, X; , 

X~ , p *) of problem (P3). The stability set of the first kind of problem (P3) 

corresponding to (Y*, X; , X~ , p *), which is denoted by S(Y*, X; , X~ , p *) is 

defined by: 
* * 

S(Y*, x;, X~, p*) = { (h,H)E VI (Y*, x;, X~, p*) is a-optimal solution of 

problem (P3)}. 

Utilization of the kuhn-tucker conditions corresponding to problem (P3) 

The Lagrange function of problem (P3) can be written as follows: 
n n 

L= L0~-~w1 x; +A~w2X~)+ Lvj Gj(Y,p) 
j=l j=l 

n n n 

+ Lllj H/Y,p,X;) + L8j Qj(Y,p,X~) + Lnj Zj(Y) 
j=l j=l j=l 
n n n n 

+ L p j X; + L cr j (l- X;) + L y j X~ + L x /1- X~) 
j=l j=l j=l j=l 
n n 

+ LJ3/Pj -h)+L8/Hj- pj) 
j=l j=l 

then, the Kuhn-Tucker necessary optimality conditions corresponding to the 

problem (P3) at the solution (Y*, X; , X~ , p *), j = 1, ... , n, will take the form: 
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Y - Y - p ?: 0, j = 2, ... , n 
j j-1 j-1 

MX~-D.+Y.+p.?:O, j=l, ... ,n 
1 1 1 1 

MX~ -Y.- p. +D. ?:0, j=l, ... ,n 
1 1 1 1 

X~?:O, 
1 

X~?: 0, 
1 

P.- h·>O J ']- ' 

Y. ?:0, 
1 

1-X~?:O, 
1 

1-X~?:O, 
1 

H . -p·> 0 J J- ' 

vj(Y. -Y. - p. ) =0, 
1 1-1 1-1 

j=l, ... , n 

j=l, ... ,n 

j =1, ... ,n, 

j=l, ... ,n 

j = 2, ... , n 
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ru( MX ~ -Y. - p . +D. ) = 0, 
1 1 1 1 

8j (MX~ -Y.- p. +D.) =0, 
1 1 1 1 

8j(Hj- pj) =0, 

f3 j (p j - h) = 0, 

pjx; = o, 

a /1- X:) = 0, 

yjXI = 0, 

Xj(1- XI)= 0, 

nj Y. =0, 
1 

ej. Bj. vj, ru. 8j, nj. pj, aj. Yh Xi ::; o, 

j=l, ... ,n 

j=l, ... ,n 

j =1, ... ,n 

j =1, ... ,n 

j =1, ... ,n 

j = 1, ... ,n 

j = 1, ... ,n 

j = 1, ... ,n 

j=1, ... ,n 

j = 1, ... ,n, 

(I) 

where all the relations of system (I) are evaluated at (Y*, X; , X I , p *) and ej. ~j• 

vj .ru , .oj, nj. pj, crj. yj. '/j ( j = 1, ... , n) are the Kuhn-Tucker multipliers. The set of 
constraints (G1) together with the last ten relations of system (I) represent a 
polytope in ~9Y1101tpcryx-space. According to whether any of the vertices ej. ~j.Vj, 

* * 
'lli· Oj, 1tj, yj. '/j. pj. crj are zero or negative, then the set T(Y*, X; , X I , p *) is the 

set of parameters h and H for which the Kuhn-Tucker necessary optimality 
* 

conditions corresponding to problem (P3) are utilized at (Y*, X; , X I , p *). 
* 

Clearly, this set can be considered as a subset from the set S(Y*, x;, XI, p*), 
i.e. 

* * 
y* E T * * E T * T( , X j , X j , p) c S(Y, X j , X j , p ). 

4. SOLUTION ALGORITHM 

In this section, we describe a solution algorithm for solving the (FSMETP). In 
this algorithm, we assume that the jobs are sorted and scheduled in nondecreasing 
order of its due date. 
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Step 1 Determine the points (a1. a2, a3, a4) for the fuzzy number in the formulation 
problem (FSMETP). 

Step 2 Convert the problem (P1) in the form of the problem (P2). 

Step 3 Formulate the problem (P2) in the parametric form of problem (P3). 

Step 4 Let G be the set of unscheduled jobs. From this set, schedule job j with 
smallest due 

date. G := G- {j }. 

Step 5 If G = <)>, then go to step 6, else go to step 4. 

Step 6 Solve the problem by any available integer software package. 
* 

Step 7 Determine the set T(Y*, x;, X~, p*), j = 1, ... ,n, by utilizing the Kuhn­

Tucker necessary optimality conditions. Stop. 

5. ANILLUSTRATIVEEXAMPLE 

Consider n = 4, and M = 100. Table (1) contains the values of Dj, 

A~, A~ and p j, (j = 1 , ... , 4) which are characterized by the following fuzzy 

numbers: 

Table (1). 

Jobs Dj AE AT pj J J 

1 3 3 1 p = (1,2,5,7) 
1 

2 5 8 3 p = (1,3,4,6) 
2 

3 6 4 5 p = (1,3,4,6) 
3 

4 7 2 4 p = (0,2,3,5) 
4 

The fuzzy problem can be written as follows: 

Min 3X1E +X{ +8X; +3X~ +4X;' +5XJ +2XJ +4XJ 
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Subject to 

Yz :2: yt + ~' Y3:2: Yz + Pz, y4 :2:Y3 +P3, 
E ~ E ~ 

100X1 :2:3-~ -~, 100X2 ~5-Yz -Pz, E ~ E ~ 

100X3 :2:6-J-; -?,, 100X4 :2:7-Y4 -~, 

X 1e :2: 0, Xi :2: 0, X: :2: 0, X: :2: 0, X [ :2: 0, X~ :2: 0, X J :2: 0, X J :2: 0, 

1-X1e :2:0, 1-x; :2:0, 1-x: :2:0, 1-x: :2:0, 1-x;r :2:0, 1-x; :2:0, 1-xJ :2:0, 1-xJ :2:0, 

Y~> Yz, Y3, Y4 ~ 0. 

Assume the membership function corresponding to the fuzzy numbers are in the 
form 

0, 

0, 

Let a = 0.36, then we get 
1.2 5'o Pt 5'o 6.6, 

PI~ P ~ Pz' 

Pz ~ P ~ P3' 

p3 ~ p ~ p4, 

p~p4. 

The nonfuzzy problem can be written as follows: 

Min X 1e +3X[ +5Xi +8X~ +5x: +4XJ +4X: +2XJ 
Subject to 

y4 :2: y3 + p3, 

0.4 5'op4 

Yz :2: ~ + PP 

100X1E :2:3-~- PP 

Y3 :2: Yz + Pz, 

lOOXi :2:5- Y2 - p 2 , lOOX: :2: 6- I; - p3 , lOOX: :2: 7 - Y4 - p 4 , 
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lOOX{ ~I;+ p1 -3, lOOX~ ~Y2 + p2 -5, lOOX~ ~~ + p3 -6, lOOX~ ~Y4 + P4 -7, 

X 1E ~ 0, X: ~ 0, X;' ~ 0, X: ~ 0, X { ~ 0, X~ ~ 0, X~ ~ 0, X~ ~ 0, 

1-X{ ~0, 1-Xi ~0, 1-X;' ~0, 1-Xi ~0, 1-X{ ~0, 1-X~ ~0, 1-X~ ~0, 1-X~ ~0, 

1.2 ~ P1 ~ 6.6, 1.4 ~ Pz ~ 5.6, 1.4 ~ P3 ~ 5.6 , 0.4 ~ P4 ~ 4.8, Yt. Yz, Y3, Y4 ~ 0. 

So we can get the following results: 

* E * E * E * E * T * T * T * T 

X 1 = X z = X 3 = X 4 = X 1 = X z = X 3 = X 4 = 0, with 

a-optimal parameters (p;, p;, p;, p:) = (3, 3, 2, 1). 

The parametric form of the above problem is stated as follows: 

Min (x£ +3XT +5XE +8XT +5XE +4XT +4XE +2XT,) 
1 1 2 2 3 3 4 4 

Subject to 
Yz - Y 1 - P1 ~ 0, Y 3 - Y 2 - Pz ~ 0, Y 4 - Y 3 - P3 ~ 0, 

100X1£-D +Y+p 20, lOOXff-D +Y +p 20, 
1 1 1 2 2 2 

lOOXi -D +Y + p 20, lOOXf -D +Y + p 20, 
3 3 3 4 4 4 

lOOXT -Y- p +D 20 lOOXT -Y- p +D 20, 
1 11 1' 2 2 2 2 

lOOXT -Y- p +D 20 lOOXT -Y- p +D 20, 
3 3 3 3' 4 4 4 4 

H1 - P1 ~ 0, Hz - Pz ~ 0, H3 - P3 ~ 0, H4 - P4 ~ 0, 
P1 - h1 = 0, Pz - hz = 0, P3 - h3 =0, P4 - h4 = 0, 

X 1E ~ 0, X: ~ 0, X;' ~ 0, X: ~ 0, X { ~ 0, X~ ~ 0, X~ ~ 0, X J ~ 0, 

1- X 1£ ~ 0, 1- X f ~ 0, 1- Xi ~ 0, 1- X f ~ 0, 

1-x; ~o, 1-xr ~o, 1-xJ ~o, 1-xr ~o, 

X1£ ~o, xff ~o, xi ~o, x; ~o, 
x[ ~0, xJ ~0, xj ~0, xr ~0, 

Y1. Y z, Y 3, Y 4 ~ 0. 
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The Kuhn-Tucker necessary optimality conditions corresponding to the above 
parametric problem will have the form: 

A:' +fliM +pi -cri =0, 

;.,; +fl3M +p3 -cr4 =0, 

A~ +8IM +yi -xi =0, 

;.,; +l12M +P2 -cr2 =0, 

;.,; +fl4M +p4 -cr4 =0, 

A~ +8 2M +y2 -X2 =0, 

A~ +83M +y3 -x3 = 0, A~ +84M +y4 -X4 = 0, 

-VI + fl1 + 7ti - 81 = 0, VI -V2 + fl2 + 1t2- 82 = 0, 
V2- V3 + ll3 + n3 - 83 = 0, V3 + ll4 + n4 - 84 = 0, 
-VI + fli - 8I - 8I + f3I = 0, -V2 + fl2- 82- 82 + fJ2 = 0, 
-v3 + ll3 - 83 - 83 + f33 = 0, ll4 - 84 - 84 + f34 = 0, 
Y2-Y1-PI;::::o, Y3-Y2-p2;::::0, Y4-Y3-p3;::::0, 
lOOXIE -D +Y + p ;::::o, lOOX,f -D +Y + p ;::::o, I I I - 2 2 2 

100X3E -D +Y + p ;::::o, lOOXf -D +Y + p ;::::o, 
3 3 3 4 4 4 

lOOX T - y - p + D ;:::: 0 lOOX T - y - p + D ;:::: 0, 
I I I I ' 2 2 2 2 

lOOXT ;::::y + p -D, lOOXT -Y- p +D ;::::o, 
3 3 3 3 4 4 4 4 

1- X IE ;:::: 0, 1- X; ;:::: 0, 1- X: ;:::: 0, 1- X; ;:::: 0, 
1- x; ;:::: o, 1- x~ ;:::: o, 1- xJ ;:::: o, 1- xJ ;:::: o, 
X IE ;:::: 0, X; ;:::: 0, X: ;:::: 0, X; ;:::: 0, X; ;:::: 0, X~ ;:::: 0, X T >0 'XT >0 

3 - ' 4 - ' 

YI, Y 2, Y 3, Y 4;:::: 0, 

ll (woxE -D +Y + p )=o, ll (woxE -D +Y + p )=o, I I I I I 2 2 2 2 2 

ll (woxE -D +Y + p )=o, ll (woxE -D +Y + p )=o, 3 3 3 3 3 4 4 4 4 4 

8 (1ooxT -Y- p +D )=o, 8 (woxT -Y- p +D )=o, I I I I I 2 2 2 2 2 

8 (wox T - Y - p + D ) = o, 8 (wox T - Y - p + D ) = o, 3 3 3 3 3 4 4 4 4 4 

vi (Y2 - Y 1 -PI) = 0, v2 (Y3 - Y 2- P2) = 0, V3 (Y4 - Y 3 - p3) = 0, 
8I(HI- pi)= 0, f3I(pl- hi)= 0, 82(H2- P2) = 0, fJ2(p2- h2) = 0, 
83(H3 - p3) = 0, f33(p3 - h3) = 0, 84(H4 - P4) = 0, f34(p4 - h4) = 0, 
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p1X1E = o, p2 x; = o, p3x: = o, p4 Xi = o, 
cr 1 (1- X 1E) = 0, cr 2 (1- X;) = 0, cr 3 (1- X 3E) = 0, cr 4 (1- Xi) = 0, 

y1X[ = 0, y2 X~ = 0, y3 XJ = 0, y4 XJ = 0, 

X1 (1-X{)=O, X 2 (1-X~)=O, X3 (1-XJ)=O, X4 (1-XJ)=O, 

1t y =0 1t y =0 1t y =0 1t y =0 ' 
11 ' 22 ' 33 ' 44 ' 

81, 82, 83, 84, ~~. ~2, ~3, ~4, v1, v2, V3, 111, 112, 113, 114, <h, <h, 83, 84, n1, n2, n3, 

1t4, 

PI, P2, p3, p4, cri, cr2, cr3, cr4, Y1, Y2, y3, y4, X1, X2, X3, X4 ~ 0. 
Where all relations of the above system are evaluated at the solution (Y*, 

E T * Xj,Xj,p) 

= (0, 2, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 1). From this system, it can be 
shown that: 

11I = 112 = 113 = 114 = 8I = 82 = 83 = 84 = v1 = v2 = V3 = X1 = X2 = X3 = X4 = n1 
= n2 = n3 = n4 = cr1 = cr2 = cr3 = cr4 = 0, P1 = -3, P2 = -8, P3 = -4, P4 = -2, Y1 = 
-1, Y2 = -3, Y3 = -5, Y4 = -4, 81 = ~~ , 82 = ~2, 83 = ~3, 84 = ~4· Therefore the 

* 
set S(Y*, X; , x; , p *), j = 1, ... , n, is given by: 

S(O, 2, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 1) = { (h1, h2, h3, h4, HI, H2, H3, 

H4)ER8I hi= H1 = 3, h2= 
H2 = 3, h3 = H3 = 2, h4 = H4 = 
1}. 

The set of feasible parameters is expressed as: 
U = { (hj, Hj) E R8,j = 1, ... ,41 H1 ;::: 2h1 - 3, H 2 ;::: h2 - 2, H3;::: 2h3- 2, H4;::: h4}. 

6. CONCLUSIONS 

In this paper, we have proposed a solution algorithm for solving the early/tardy 
scheduling problem with fuzzy parameters in the constraints. Some basic stability 
notions for the problem of concern have been defined. These notions are the set of 
feasible parameters, the solvability set and the stability set of the first kind. A 
parametric study has been carried out for this problem. An illustrative example has 
been given to clarify the theory and the solution algorithm. 
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