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ABSTRACT 

The accurate and efficient Galerkin' s method was developed in the spectral 
domain for analyzing gap discontinuities in patch antenna array. Using new 
current distribution the problem is solved using full wave approach rather than 
quasi-static approximation. The new current distribution speeds up the 
convergence of the solution for obtaining the resonance frequency of the system 
with electric and magnetic walls at the planes of symmetry. The equivalent 
circuit of the gap is determined for different gap sizes. 

Keywords: Microstrip, Patch antenna, Coupled arrays, Microstrip 
resonator, Coupling gap. 

INTRODUCTION 

One of the effective methods for increasing the bandwidth of patch antenna 
is to add two resonators which are coupled to the patch radiating edges [1]. The 
coupling gap between the two opened rectangular patches were modeled as two 
dimensional capacitive networks as shown in Fig. 1. The values of these 
capacitance's are obtained using formulas given in reference [2] for even and odd 
modes of coupled microstrips of unequal widths. Complete characterization of 
the gap is presented in this paper. Galerkin' s technique is applied in the spectral 
domain to solve the microstrip resonators problem. The characteristic equations 
for resonant frequencies are derived for both electric and magnetic walls at the 
planes of structure symmetry. The new current distribution basis functions 
which are transformed into Bessel functions in the spectral domain, reduces 
computational time with good accuracy. 
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Fig. 1. Patch array: (a) Gap coupled resonators, 
(b) Gap equivalent circuit 

ANALYSIS OF MICROSTRIP RESONATOR 

The fields existing in the structure are obtained from the superposition of TE 
and TM fields. They can be expressed in terms of two scalar potentials e(x, y, z) 
and h(x, y, z) as follows: 

Ezi(x,y,z) =kiei +clei I t3z2 

H zi{:i(,y,z) =k I hi+ c2 hi I o z2 
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Exi (x,y,z) = clei I oxoz- jm,ui (ohi I oy) 
Hxi(x,y,z) = clhi I ex&+ jm Ei (oei I oy) 

where i = 1 or 2 ,designates the substrate or air region. 

(1-c) 

(1-d) 

The field components are transformed into the spectral domain using Fourier 
transforms 

ei(a,y,P)= J: dzJ:dxei(x,y,z)exp(jax)exp(jfk) <2-a) 

hi(a,y,p) = J: dzJ:dxhi(x,y,z)exp(jax)exp(jfiz) (2-b) 

where a and J3 are Fourier transform variables. The boundary conditions [3] are 
transformed and applied to the Fourier transforms of the field equations (1-a) to 
(1-d) to obtain the solutions of field components in Fourier domain as follows: 

e1(a,y,p) = A(a,p)Sinh(y1y) 
h1(a,y,p) = B(a,p)Cosh(y1y) 
e2 (a,y,p) = C(a,p) exp [- Y2 (y- d)] 
h2(a,y,P)= D(a,p) exp [-r2(y-d)] 

(3-a) 

(3-b) 

(3-c) 

(3-d) 

A, B, C, D are unknowns which are obtained from applying the continuity 
conditions at the interface y = d in the spectral domain [3]. The coefficients are 
expressed in terms of the unknown strip currents lx(x, z) and lz(x, z). 
The final boundary condition is: 

Ex(x,d,z) = Ez(x,d,z) = 0 lxl < W,lzl< L (4) 

while Ex (x, d, z) and Ez (x, d, z) have different values in the dielectric regions. 

This condition is applied in the spectral domain to eliminate the unknown 
coefficients and obtain the following coupled equations: 
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Ex(a,p) = U 1 (a,p)Jx (a,P)+ U 2 (a,p)Jz(a,p) 
Ez (a,p) = U 3(a,p)Jx (a,P)+ U 4 (a,p)Jz(a,p) 

(5-a) 

(5-b) 

where U l• Uz, U3 and U4 are the Fourier transform of the Green's functions, 

J x and J z are the Fourier transforms of the unknown patch currents. 

CURRENT DISTRffiUTION FUNCTIONS 

Accurate knowledge of x and z components of patch current distributions 
helps in accurate evaluation of patch dispersion characteristics. The choice of 
the basis functions is very important in problem convergence and computational 
time. In this work a new current distribution function is assumed in the form: 

J x(x, z) = L:;=O A 0 X 0 (x, z) 

J z(x,z) = L:;=O B 0 Z 0 (x,z) 

(6-a) 

(6-b) 

Where An and Bn are unknown coefficients to be solved and the basis Xn and Zn 
has the forms: 

( ) _ - jSin(n + l)Q - jSin (nQ) 
Xn x,z - (n + l):rW . { J_L -

L2 _ z2 2 

(7-a) 

( ) _ Cos( nQ) Cos(n + l)Q 
Zn x,z - { 2 2)d-. (n+l)nL 

W -x 

(7-b) 

The Fourier transforms of (6) are given by: 
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- ( ) "oo Jn+I(aW) ( ) 
J x a,fJ = L..n=O An aW .J n flL (n odd) 

(8-a) 

- ( ) "oo ( ) 1 n+ 1 (fJL) J z a' fJ = L..n=O B n J n aW . fJL (n even) 
(8-b) 

where Jn(aW) and Jn(PL) are Bessel functions. 

PATCH RESONANCE FREQUENCY 

Substituting equation(8) into equation (5) and taking the inner products with 
the basis functions Xi and Zi for different values of i, one applies Parseval's 
relations to obtain the matrix equations: 

I:=o Am Fim + I;=O Bn Gin= 0 (m,i odd),(n even) (9-a) 

I:=o Am Him+ I;=O Bn Kin= 0 (n,i even),(m odd) (9-b) 

where 

(10-a) 

(10-b) 

(10-c) 

(10-d) 

The determinant of the coefficient matrix must be equal to zero for a certain 
value of complex frequency f. the values of m, n and i must be truncated. 
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ANALYSIS OF THE GAP IN PATCH ARRAY 

Gap parameters are obtained using the same analysis of the patch with 
additional two electric and magnetic walls placed at the planes of symmetry as 
shown in Fig.l. When walls are used the modes in the x-direction will be 
discrete rather than continuous modes existing in open structures. So the 
transformation in x-direction will be discrete Fourier variable 11k depending on 
the kind of walls as follows [3]: 

For electric walls 

11k = (k - 112 }r Is 

11k = k7rl s 

For magnetic walls 

11k = k7r Is 

17k = (k - 112 }r Is 

where k = 1, 2, 3, ... 

for Ez even -Hz odd(in x) modes 

for Ez odd- Hz evenQn x) modes 

for Ez even- Hz odd(in x) 

for Ez odd- Hz even(in x) 

(11-a) 

(11-b) 

(11-c) 

(11-d) 

The new resonance frequency corresponding to electric wall structure is fe 
and that for magnetic wall is fm. The corresponding wave lengths are: 

( )
1/2 

.Ae = Cl fe Ere 

( )
112 

Am=Cifm Ere 

(12-a) 

(12-b) 

where C is the free space velocity of light, Ere is the effective dielectric constant 
given in reference [4] for dispersive behavior of microstrips. 

EQUIVALENT CIRCUIT OF THE GAP 

Open-ended gap in microstrip patches are represented by an extension in the 
patch length ~e for electric walls and ~1m for magnetic walls where: 
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Me =(ILe 12-2L)12 

~lm =(ILm 12-2L)I2 

The equivalent capacitance's [5] are given by: 

( )
1/2 

Ce = ~le Ere I C Z0 

( )
112 

C m = ~1m Ere I C Zo 

(13-a) 

(13-b) 

(14-a) 

(14-b) 

where Zo is the characteristic impedance[4], [6] Ce and Cm are related to the 
7t-circuit of the gap by the equations: 

Cg=(Ce-Cm)12 

Cp=Cm 

NUMERICAL RESULTS AND CONCLUSION 

(15-a) 

(15-b) 

The complex resonance frequencies at both electric and magnetic walls are 
computed to evaluate the equivalent 7t-network of the coupling gap. The 
imaginary part of the frequency represents the radiation losses from the fringing 
fields at the patch ends. The series capacitance Cg (Fig. 2) increases as the gap 
decreases which agree with the capacitor basic idea. Capacitance Cp is negative 
because the gap reduces the overall microstrip shunt capacitance in tlie vicinity of 
the symmetrical plane. The new current distribution reduces the computational 
time due to the fast problem convergence. The matrix size is increased to (6x6) 
to obtain satisfactory results, truncation error is less than 5% compared to 
experimental work in reference [1] . The method is effective in solving antenna 
arrays and other complicated structures. Tables 1 and 2 show some results for 
different Teflon substrates with dielectric constant Er = 2.2 and d = 0. 17 em 
and substrates having Er = 2.55 and d = 0. 159 em. 
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Table 1. Gap Parameters for Er = 2.2, d = 0. 17 em, 2W = 3.95 em. 

2L = 0.52 em 

Spacing (2S) em 0.15 0.19 

fe GHz 3.731 + j o.75 x w-4 2.877 + j o.24 x w-6 

fmGHz 5.235 + j 0.125 x w-6 5.257 + j 0.111 x w-5 

2L = 2.71 

Spacing em 0.15 0.19 

fe GHz 3.722 + j o.ll8 x w-3 3.599 + j o.559 x w-6 

, fm GHz 5.201 + 1 o.611 x w-5 5.242 + 1 o.539 x w-8 .... 
1->J 
0 

Table 2. Gap Parameters Er = 2.55, d = 0.159 em, 2W = 3.95 em, 2L = 2.71 em 

Spacing (em) 0.15 0.17 0.19 0.2 

fre GHz 4.797-j o.24 x w-6 4.799- j o.29 x w-6 4.841- j o.901 x w-6 4.849 - j o.409 x w-6 

frm GHz 5.001-j o.909 x w-8 4.99-j0.158X w-7 4.98- j o.232 x w-7 4.899- j o.281 x w-7 

Cg(Pt) 0.0885 0.0843 0.0802 0.07151 

Cp(Pt) -2.2895 -2.2831 -2.2764 -2.2822 
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Fig. 2. Cg and -Cp versus spacing for different patch lengths 
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