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ABSTRACT 

In this paper, the concept of a finite n-state cyclic machine An is defined. These machines are then completely characterized using 
the prime factorization of n. Specifically, it is proved that any finite-state cyclic machine 

An= (Qn, X, Y, 0,, A,), for n~2 

is isomorphic to a multi-series or multi-parallel composition of simpler cyclic machines. 

INTRODUCTION 

One of the basic concepts in computer applications is that 
of a fmite-state sequential machine. Informally, this is a device 
that is served with inputs and generates outputs at discrete 
instances of time, and whose output at any time depends on 
the input and the internal condition (called the state) of the 
device at that time. In addition, the input and the internal state 
at any time determine the initial condition at the next instant of 
time. The action of this system consists of specifying the next 
state as well as the output of the machine. 

Of the many sequential fmite-state machines that are 
studied mathematically, we restrict ourselves here to a special 
type of what is known as Mealy Machines. In this work we 
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investigate some properties of a special case of an abstract 
Mealy machine (or automaton) which we call finite-state 
cyclic machines. This notion of a finite-state- cyclic machine 
extends naturally to initialized machines (i.e. machines in 
which a particular member of the set of states is designated as 
the initial state.) Thus we shall deal with both arbitrary, and 
initialized finite-state cyclic machines simultaneously. 

Section 1 introduces the basic concepts and terminology of 
a finite state cyclic machine An= (Qru X, Y, 0,, ~swell as 
the serial and parallel composition operations c:J and lbl 
which are special algebraic devices for combining these 
machin~s. It is ~roved (Theorems 1.7 an~ 1.10) t~at for a~ 
of cychc machmes Aru Allb the composite machmes An c:J 
Am and for (n, m) = 1, An lhl Am are again finite-state cyclic 
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machines. Similar results (Theorem 1.11) can be obtained for 
the initialized finite-state cyclic machines An(i), Am(i). 

In Section 2 we present the natural concept of a network of 
cyclic machines, which results from the iteration of the 
operations of multi-series and multi-parallel compositions of 
cyclic machines. Applying the conclusions of section 1, we 
prove some basic results (Theorems 2.3 and 2. 7) on the 
decomposition of a finite-state cyclic machine An into simpler 
cyclic machines using these operations. The corresponding 
network diagram for this decomposition is illustrated in Figure 
5, (which we call the H.-M. diagram of the machine). 

1. BASIC CONCEPTS ON CYCLIC MACHINES 

1.1. NOTATION AND TERMINOLOGY 

Q• = {qi, q2, .... } will denote an infinite universal set of 
'states' qi, and n, m denote natural numbers;::: 1, On what 
follows we shall only use the first n or m elements of Q•. For 
any n;:::2, let Qn = {qh ... , qn}. 

A will denote a Mealy machine, which is ( cf [ 1]) a 5-tuple 
(Q, X, Y, o, A.) = A, where Q is the set of internal states, X is 
the set of input symbols and Y is the set of output symbols; o: 
QxX -> Q represents the transition function of A, while A.: 
QxX -> Y denotes its output function. 

1.2. DEFINITION 

Let n;:::2. Then-state Mealy machine [An= (Q~~> X, Y, 0., A.)] is 
called an n-state cyclic machine if An satisfies the following 
conditions: 

a) Qn is defined as in 1.1; 

b)X=Y= {0, 1}; 

c) The transition function 0.,: QnXX -> Qn is given by: 

0., ( qi, 0) = qi, 1 :<:;i:<:;n; 

_ {qi+I ,1:5 i :5 n-1, 
()n(qp1)- . 

q1 ,1 = n. 

d) the output function A.n : QnXX -> Y is given by : 

"(q,,x)={~ 

1.3 DEFINITION 

(i,x) = (n,1), 

otherwise 

For n;:::2, the initialized n-state cyclic machine An(i) is 
obtained from the cyclic machine An by specifYing the initial 
state qh and we write 

An(i)= (Q~~> X, Y, 0., ~ qJ). 

1.4EXAMPLE 

The cyclic machines At and A5(i) are represented by the 
following state diagrams (Fig. 1 ). 
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Figure 1 

1.5 DEFINITION 

The series composition of a pair of state machines (both 
arbitrary or else both initialized) is defined as usual (cfl4]) for 
the Mealy machines: 

For n;:::2 and m;:::2 we denote the series composition for the 
two fmite state machines A11? ~ (res£ectively An (i), Am (i0 by 
An e Am (respectively An<•)Cj Am •0. We then write 

An 8 Am = (QnXQllb X, Y, o, A.), 

(respectively An(i)8 Am(i) = (QnXQllb X, Y, o, A., (q~> qi))) 

where o ((qi, qy, x) = (on (qi, x), Om (q;, An (qi, x)) and 

A ((qi, qy, x) =Am (q;, An (qi, x)), for qiEQ~~> q; EQm 

and X EX. 

1.6REMARK 

We recall the fact that a pair of Mealy machines A = (Q, 
X, Y, o A.) and A'= (Q', X', Y', o', A.') are said to be isomorphic 
if there exist three bijective maps ho: Q -> Q', hx: X -->X' 
and hy:Y -> Y' such that h0 (o (qh x)) = o' (ho (q), hx (x)) 
and hy (o (qi, x)) =A.' (h0 (q), hx (x)) for all qEQ, xEX. That is, 
the two machines A and A' are isomorphic if the following map 
diagram (Fig. 2) is commutative. 

For the initialized state machines A <i>, A'(i) we require the 
further condition that ho (q1) = q{ The triple (ho, h:x, hv) of 
bijections is said to constitute an isomorphism between the 
state machines A and A'. 
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A. 
y ~ QxX > Q 

lh, l (b~hx) l~ 
A.' o' 

Y' ~ QxX' > Q' 

Figure 2 

1.7THEOREM 

For n, m ~let Alb Am be two fmite-state cyclic machines 
(respectively An(i), Am(i) be two initialized fmite-state cyclic 
machines). The~ the se~ies composition An 8 Am 
(respectively An(') e Am<''>) _is isomorphic to the cyclic 
machine Anm (respectiVely Anm'0. 

Proof: Put An= (Qlb X, Y, On, An) and Am= (QIIb X, Y, ~ Am) 
(respectively An(i) = (Qn ,X, Y, On,~ q 1) and Am(i) = (QIIb X, 

Y,~ Am, q 1)), and let 

An8 Am = (QnX Qllb X, Y, o, A) (respectively 

An(i) 8 Am(i) = (QnX Qllb X, Y, o, A, (qJ. qi))) 

be their series ~o~sitio~. We shall show that An8 Am 
(respectively An(') ~ Am<''>) is equivalent to a cyclic machine 
(respectively an initmlized cyclic machine). 

Consider the cyclic machine Anm = (Qnllb X, Y, On lib 'A.nm) 
(respectively Anm(i) = (Qnllb X, Y, On lib Anllb qJ)), and define 
the map ho: QnXQm -> Qnm by the rule : ho (q;, 'li) = qG-I)n+i 
for 1$i$n, l$j$m. For the maps hx. by take the identity 
functions hx = 1x. by = 1 y. We shall now show that ho is 
injective: For l$i$n and 1$j$k$m it follows that 

Also, for l$i<j$n and l$k, t$m we deduce that 

h0 (q;, qk) = q(k-I)n+i * q<t-I)n+j = h0 ('li, q,). 

Thus ho is indeed injective. To verify that ho is surjective 

let qkEOnm· Then there exsists q;EQn, <!iEQm such that ho (q;, 
'li) = qk(by takingj = [ (k-1)/n] +I and i = k- G-1) n ). 

For the verification of the isomorphism condition it will be 
necessary to prove, for l$i$n, l$j$m, and x E {0,1 }, that 

ho (o ( (q;, 'li), x)) = Onm (q ~-I)n+i, x) (1) 

and 

A ( (q;, 'li), x) = Anm (q ~-I)n+i, x) 

Case 1: Let x = 0. Then, for 1$i$n, l$j$m we have: 

ho (o ( (q;, 'li), 0)) = ho (on (q;, 0), Om ('li, Am ('li, An (q;, 0)))) 

= ho (q;, 'li) = q G-I)n+i· 

But Amn (hQ (q;, 'li), 0) = Omn (q ~-l)n+i• 0) = q ~-I)n+i· 

(2) 

Thus, ho (o ( (q;, qj), 0)) = Onm (q (i-I)n+h 0). 

Moreover, A ( (q;, 'li), 0) =Am ('li, An (q;,O)) = 0, 

and Anm (ho (q;, 'li), 0) = Amn (q (i-I)n+i. 0) = 0. 

Hence A ( (q;, 'li), 0) = Amn (q (i-I)n+i• 0). 

Case 2: Let x= 1. In a similar fashion it can be seen that the 
equations (1) and (2) hold. The proof is facilitated by easily 
verifying it for the following three situations : a) fori= n, j= 

m; b) fori= n, l$j:~m-l; and c) for l$i$n-1, l$j$m. 

In the case of initialized fmite state cyclic machines, we 
note that ho (qJ. q 1) = qh which completes the proof. 
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l.SCOROLLARY 

For any three finite-state cyclic machines Alb Allb Ap. the 

following holds : 

a)An@ Am:= Am@ An. 

b) (An 8 Am) 8 Ap::: An 8 (Am e Ap)-

We shall now present, for the cyclic machines, the 
corresponding notion of parallel composition, as described for 
Mealy machines (cf[2 & 3]). 

1.9 DEFINITION 

For n,m~ consider tlie two cyclic machines 

(respectively the two initialized machines 

An (i) = (Qlb X, Y, On, ~ qJ), Am (i) = (Qllb X, Y, ~Am, qi)) 

and let b denote a binary operation on Y. Then the parallt:l 
com_positon of the two machines Alb Am (respectively An <'\ 
Am('') with respect to the map b is defined as follows: 

An I b I Am= (QnXQIIb X, Y, O, A), 

(respectively An(i) I b I Am(i) = (QnxQIIb X, Y, o, A, (qJ. qJ))) 

where o ( (q;, 'li), x) =(On (q;, x), Om ('li, x)), 

and A ((q;, 'li), x) = b (An (q;, x),Am ('li, x)). 

In other words, if we put a ((q;, qj), x) = ((q;, x), ('li, x)) 
then the functions o and A for the parallel composition 
machine will be defined so that the following two map 
diagrams (Figure 3a and Figure 3b) are commutative. 

------> (Q8xX) X (QmxX) 

Figure 3a 
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a 
----~--> I(QnxX) X (QmxX) 

b 
l (~~ 

YxY 
Figure3b 

1.10REMARK 

The series and parallel composition (as defmed in 1.5 and 
1.9) of two cyclic machines Alb Am can be represented 
diagrammatically as follows (Figure 4): (cf[4 & 5]). 

y 

Figure4 

1.11 THEOREM 

Let m, n~ be two relatively prime integers, and consider 
the two arbitrary finite-state cyclic machines 

An = (Qlb X, Y, On, An) , Am = (Qllb X, Y, ollb Am) 
(respectively the initialized cyclic machines An (i) and Am (i), 
with initial states q0). Defme the binary operation b on Y via 
logical conjunction; i.e. 

ifyl= 1 = y2' 

otherwise. 

Then An I b I Am (respectively An (i) I b I Am (i) ) is isomorphic to 
the finite-state cyclic machine Anm (respectively the initialized 
finite-state cyclic machine Anm (i)). 

Proof: Let An I b I Am= (QnxQllb X, Y, o, A) 

(respectively An(i) I b I Am(i) = (QnxQllb X, Y, o, A, (qJ. qJ))) 

be the parallel composition of the two cyclic machines Alb Am 

(respectively An(i), Am(i)).It is easy to see that An I b I Am 

(respectively An(i) I b I Am(i}y has nm distinct states and behaves 
as the cyclic machine An m (respectively An m (i)), as we show 
below. 

Case 1. Let x = 0. Then for O$i~-1 and O$j$m-1 we have 
(using definition 1.9): 

and 
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Case 2. Let x = 1. Then: 

a) Fori= n-1 andj = m~l we have 

o (( qn-J. qiD-I), 1) = (On ( qn-J. 1 ),Om ( qiD-J. 1)) = ( qo, qo), 

and 

A (( qn-J. qiD-J), 1) = b (An (qn-J. 1 ),Am (qiD-b 1 )) = b (1, 1) = 1. 

b) Fori= n-1 and O$j$m-1 we have 

o ((qn-J. (jj), 1) = ((qo, <lj+J), 1), 

and 

A ((qn-J. <J.i), 1) = b (1, 0) = 0. 

c) For O$i~-2 andj = m-1 we have 

o ((q;, qiD-I), 1) = (qi+J. qo); A ((q;, qiD-I), 1) = b (0, 1) = 0. 

d) For O$i$n-2, O$j$m-2 we have 

o ((q;, <J.i), 1) = (qi+J. <!j+1), and A ((q;, (jj), 1) = b (0, 0) = 0. 

We deduce that the number of states reached by an arrow 
(for value 1) as in a), b), c) and d) above will be respectively 
1, m-1, n-1 and (n-1) (m-1), and these states are all distinct. 
Thus the total numbjr of these states is equal. to Ipll. I~ follows 
that the machine An b I Am (respectively An (t) I b I Am (t) has nm 
states, each of which emits one arrow and is targeted by one 
arrow. 

Consider now a cycle C (of states) of An I b I Am for which 

o ((q;, <J.i), 1) = (q(i+I)modn, q(i+1)modnt) for O$i<n, O$j<m. 

It is obvious that this cycle has N(n, m) distinct states, with 
N (n, m) denoting the least common multiple of n and m. But 
as n and m are relatively prime integers, N (n, m) = nm. Thus 
the cycle C spans all the states of the machine An I b I Am 
(respectively 

An(i) I b I Am(i)). We also note that for each qkEQn m there 
corresponds the element ( qkmodn, qkmodnt) of QnXQm for 
O$k$nm-l. Hence we get that the machine An I b I Am 
(respectively An (i) I b I Am (i') is indeed isomorphic to the cyclic 
machine Anm . 

The following corollary and its proof are immediate. 

1.12 COROLLARY 

For cyclic finite-state machines Alb Allb Ap with n, m, p 
relatively prime in pairs, we have : 

a) Ani b I Am=Aml b I An; 

b) (An I b I Am) I b I Ap =:An I b I (Am I b I Ap). 

1.13 REMARKS 

The condition that n and m are relatively prime is essential 
in 1.11. If n and m are not relatively prime, then the state 
diagram for the machine An I b I Am may not be connected. 

For x = 0, case 1 of Theorem 1.11 holds. 

For x = 1, the cycle C will be as in case 2 of Theorem 
1.11, and C has N (n, m)states. Since N (n, m) <nm, the cycle 
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C will notgenerate all the states of the machine An I b I Am . 
This implies that Ani b I Am cannot be cyclic. 

To examine the parallel composition for the initialized 
fmite state machines, we recall the following definitions, ( cf 
[2 & 6] & 7]). 

1.14 DEFINITIONS 

1) Let A= (Q, X, Y, o, A, q0) be an initialized Mealy machine. 
The state qeQ is said to be accessible if there exists a 
directed path from q0 to q in the state diagram of A. A state 
for which there is no directed path from it to q0 is called 
inaccessible. 

2) We shall denote by Re (A) the initialized Mealy machine 
which is obtained from the machine A by deleting from Q the 
subset of all states (of the machine A) inaccessible from q0• 

We shall call Re (A) the reduced initialized Mealy machine 
of A with respect to q0 • 

1.15 THEOREM 

For n, m;:::2 let An(i) = (Qru X, Y, Oru An, q0 ) and Am(i) = (QIIb 

X, Y, ollb Am, q0) be two initialized finite-state cyclic 
machines, and suppose that the map b: YxY -> Y is given as 
in 1.11. Then the reduced machine Re (An(i) I b I Am(i1 is 
isomorphic to the finite-state machine AN(n,m)(t), where N (n, m) 
denotes the least common multiple of n and m. 

Proof: Consider the parallel composition An (i) I b I Am (i) of the 
pair of initialized machines An(i), Am(i). From 1.9 we infer that 

o ((qi, (jj), 1) = (q(i+I)modn, %+1)modm), for 1~i~n, 1~j~m. 

In the above parallel composition state machine, the 
various states 

q = (q(i+l)modn, %+I)modm) (3) 

are accessible, as explained in the following steps. 

(i) The state q can be accessed from (qh q 1) by employing the 
string 1ifor 1~i~ (n,m). 

(ii) For an arbitrary state q as in (3) we have o (q, 0) = q. 

(iii) Fori =N (n, m), we have o ((q~, q 1), 1i) = (qh q 1). 

It follows that for all i, j there exists an integer k such that 

0 ((q(i+l)modn, q(i+i)modm), 1k) = (q(j+l)modn, q(j+J)modm). 

Thus, any state from (3) above can be accessed from any 
other state of (3), by using the string 1 k for any integer k. 

It can also be easily inferred that 

A. ((qi, qj), 0) = 0, l~i~n, l~j~m; 

and 

'- ((q,q, ), I) = { ~ fori= l,j = m, 

otherwise. 
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This completes the proof that the reduced machine 

Re (An(i) I b I Am(i)) 

is isomorphic to the initialized finite state cyclic machine 
(i) 

A N(n,m)· 

2. DECOMPOSITION OF CYCLIC MACHINES 

In this section we shall present a method of decomposing 
an arbirary finite-state cyclic machine An (for n composite) to 
simpler cyclic machines. We shall prove that An is equivalent 
to a network of machines joined under the series and parallel 
compositions. 

2.1 DEFINITION 

For~1, let 

(1) 

be two sequences of k non-negative integers, with m~ for 
1~j~. (For typographical convenience we shall put mj = m G), 
etc.). Then the construction 

il ik 

( eArn(!)) lbl ..... lbl C8Am(k)) (2) 

r 1=1 rk=1 

formed by the application of the (multi-) series and (multi-) 
parallel composition operations (as in 1.5 and 1.9), on the finite­
state cyclic machines An(j)> for 1~j~, is called a network of 
cyclic machines belonging to the pair of integer sequences (1 ). 
This network is schematically illustrated in Figure 5. The 
resulting machine (2) will be denoted here by the syfnbol 

ii······· .. ik 
Bm(l) ...... m(k). 

(3) 

ik times 
~----. 

Figure 5 

2.2REMARKS 

1. By the corollaries of Theorems 1. 7 and 1.11, the construction 
(3) can easily be shown to be well-defmed. 

2. lt follows from the construction (3) that we can naturally 
extend it to initialized Mealy machines. 

3. Ifk = 1 then there is no "parallel" operation in B~(l) which is 

therefore just the series composition for the cyclic machine 
An(i) composed i 1 times. 
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2.3THEOREM 

Let n~ be a natural number and 

n = p;1 
..... p~ ( k :;?: 1) the standard factorization of n, with 

PI. ... , Pk distinct primes. Then the arbitrary finite-state cyclic 
machine An is equivalent to the composite 

BiJ·······ik 
p(l) ......... p(k) 

Proof: This follows immediately from the results of 1.7, 1.11, 
and2.1 

2.4 COROLLARY 

Other assumptions being as in 2.3, lets be a permutation of 

the set {1, 2, .. , k}, and, for 1~, lett (r) = is(r)> q(r) = Ps<r) and 
v (r) = qr. Then 

(a) Bt(l) ........ t(k) "" An 
q(l) .... q(k) 

(b)A ===B!... ... I 
n - v(l) .... v(k) 

Proof: Both results follow from 2.3 and the facts that 

(i) Ar 8 As= As 8 Ar 

and 

(ii) (Ar 8 As) 8 At::: Ar 8 (As 8 At), 

for any positive integers r, s, t, together with the corresponding 
results for the operation of parallel-composition, but with the 
added condition that r, s, t are pairwise relatively prime, as well 
as the following easily proved relation : 

(iii) Arlb I (As8 At):=(Arlb 1As)8 (Arlb I AJ 

2.5EXAMPLE 

If some of the integers m" m2, .. , mk are not relatively 
prime, then the network 

Bil ..... .ik 
m(l) ... m(k) 

may have a non-connected state-diagram, as is illustrated by 
the following example. 

Consider the network 

which is the parallel composition of A2 and A4; the state-tables 
and diargam of these machines are depicted below in Figures 6a, 
6b and 6c. 

~ AI 

0 I 0 I 

ql ql q2 0 0 
110 

0/0 

q2 q2 ql 0 I 

Ill 

Figure 6a 
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ql 

q2 

ql 

q4 

qq 
I I 

qq 
2 I 

qq 
3 I 

qq 
4 I 

qq 
I 2 

qq 
2 2 

qq 
3 2 

qq 
4 2 

'·' D:.• 

0/0 

0 
ql 

q2 

ql 

q4 

04 

I 

q2 

ql 

q4 

ql 

0 
qq 

I I 

qq 
2 I 

qq 
3 I 

qq 
4 I 

qq 
I 2 

qq 
I 3 

qq 
3 2 

qq 
4 2 

2.6REMARK 

0 

\ 
0 I 
0 0 

0 0 

0 0 

0 I 

1 
qq 

2 2 

qq 
3 2 

qq 
4 2 

qq 
I 2 

qq 
2 I 

qq 
3 I 

qq 
4 I 

qq 
I I 

0/0 

0/0 

Figure 6b 

A. 
0 
0 

0 

0 

0 

0 

0 

0 

0 

Figure 6c 

Figure 6c 

1 
0 

0 

0 

0 

1 

0 

0 

1 

tJ 
0/0 

0/0 

In a similar vein the concept of multi-series/multi-parallel 
composition network can be easily adapted to initialized finite­
state cyclic machines. The symbol 
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will denote the multi-series/multi-parallel network defmed by 
the pair of integer sequences of2.1 (1 ). 

The next theorem gives the corresponding result in 2.3. for 
the initialized finite state cyClic machines 

A(i)n(J} for l$;j~. 

2.7THEOREM 

il ik 
-Let n be a natural number ~ and n = Pt ••• P k be the 

standard factorization of n, with Pt. .. , Pk distinct primes, 
Then: 

AU) ::::: U) Bi1 ... Jk 
n - p(I) .... p(k) 

Proof: Follows immediately from 1.7 and 1.11, in conjunction 
with 2.3. 
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