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ABSTRACT

The aim of this paper is to present a new extension of the Szasz-Mirakyan operator n the whole real axis, and to give

its convergent approximation theorem.
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1. INTRODUCTION
In 1950 O.ASzasz  introduced and investigated the fol-

lowing operator, the well known Szasz-Mirakyan operator,

(nx)k

n(fx)”e‘“‘)Ef() x € [0,09),

where f'is defined on [0, o).
Later on, J. Grof gave the following extended operator
of the Szasz-Mirakyan operator. Let f be defined in (-o0, o0),

I (fx) =

+ e

where k < £, <k + L and investigated its approximation
problem.

Recently, Rempulska lucyna and Skorupka Moriala 3]
gave a modified operator as follows. Let f is defined on
[1, eo), }

Ap (f,x) = # (0) + 2 f (2k+1) (nx)

1+Sinhnx no7 2k +1)!

x€[0,00),
and discussed corresponding approximation problem
In this paper we give a new extension of the Szasz-
Mirakyan operator.
Let f(x) be defined (-0, o) and m be an natural number, the

extended operator

RMfx) = 1

{2f(o)+
2 + sgn x(e™" — °

—(mx)"')
o (¢ 6F 6F | ()"

sgn x > \FED) - Dk £ (- ) DT 0 ¢ x < o0 (1)
=0 n n k!

where k < 6<k+1 and sign x is the sign functioin.

Especially, when 6 k=kx €[0,%0) and f is an even func-
tion, we can see clearly that the operator R}, (f;x) is just the
operator A(f;x), therefore R}, (f;x) is also an extension of the
operator Ap (f;x).

2. RESULTS
By @24(f; 8) denote the modulus of continuity of f in the
inteval [-2A,sA] (2>0), that is,

4(f; 8) =sup|f(x) - f (69]8
ey <8

§>0,x,y €[-24A, 2A], @)

(in the following we use the shorter form ®A(8) it has the

b k
Y )+ D f-El P, xe (oo, o),
=} k!
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following propertiesm
(1) ®,4(f;0) 2 0 is an increasing and w,4(8) —0, 0.

@) f®) - fO) [<03a(x = ¥), x,y €[-24,24].
(3) 0A(A-6) < (A +1) 0,(9) (A >0, 5>0)
@ L=0(0ud)

n n

In this paper we give the following theorem.
Theorem. Let f(x) be a continuous function defined in
(-o0, o). If for some o >0, f(x)=0(e™XI") (-co<x<oo), then

m21 is an odd number, the inequality

Ru(f0) - () = 0 nn(L) ]

when

holds in any inteval [-A,A] (A>0) for n > max {8(xe2“, A—Z}
Here and after the bounds of “O” are independent of n.
When m=1, 8, =k, From the above theorem, we immedi-
ately obtain the following.
Corollary 1. Let f(x) be a cntinuous functin defined on
[1, o). If for some o >0, f(x)=O (e=) (0<x<co), then

4, (9~ 1@ = 0] op(D)] - 0,

for n > max {Saez“, —Az— }
Corollary 2. Under the conditions of Corollary 1 and
f(0)=0. Let

1 S f(&k_)(ﬁ’ﬁ

B, (fx) = ,
U L+sinhnx & 1’ (sky

then in any interval [0,A[, we have

B, (fx) - f (®) =0 (COZA (VLE))

when n > max {8cxe2“ j }
3. LEMMAS

In order to prove Theorem, we need some lemmas.

Lemma 1 : For x>0 and m is an natural number, the

following identity holds

(k (nx )")’( ——

km
Proof : Using the known formula ¢ —E Q (—oo<x<o0),

@
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successively differentiating (4) and then multiplying by x, we

can get two equalities as follows

OZO k; (_nxz”' = (nx)y"e™", )
0 k!

o (mym

S = ((uxy" + (rxym e, (6)

Multiplying (4), (5) and (6) by the factors (nx)™", -2(nx)"
and 1 respectively, and then adding three equalities up togeth-
er, we immediately obtain the equality (3).

Lemma 2 : When x>0 and m>2 and k>l are integers, then

s ,L,4<Ik (nx)"

(nx)z

Proof : When x >0, m > 2and k 2 1, we have

e (] = | (B (G + oy o) +...+ G|

Zlk’ﬁ—nx‘ [1+nx)y™!
but

1>(mx) 2, 0<mr<l,
1+(nx)™! 2
() < ()Y, 1<x<oo, m22,
S0
my 1

- (|20 o - nx|  (m22).
From this lemma 2 is obtained.

Lemma 3: When x>1 and m>2, the following inequality

holds

ki) (krln‘ —nx)2 &2& <2e™" M

Proof : Using lemma 2 and lemma 1, we get

E(k'" nx)z(_l<(1)m§l(k (n )m)z( )
)m)l ( T = ™" x>0,m>2,

( ) i

so the left-hand side of (7) is

S (6 - oy (k"f—) <+ 3 @y

< (mxy+e" = [ie("j—))mzﬂ]ew”‘.
2 2 < <px<
But (mfn) L Juy sl O<me<l, ®)
e nxP" <1,  1Snx<eo (m22),

and hence we get the conclusion of lemma 3.
Lemma 4: If m>1
(0,A], the inequality

, 8 >0 and o>0, then in any inteval

ak Jom
m ""1 nx
e™" 3 e . (k') 0(——) )
_i’ln_' —x|28
holds for n> lA;gei

Proof. The lefi-hand side of (9) is

(nx)”" _

Y % 3 £BTEnD Ly, (10)
‘Ml——x >6 ‘
n
where [ — ]
I(x ( )= e’("")m“}' (11)
k!
1
km
x {28
1
2 k"
Say t=xe™" (m21). If |- —=x >6, then we know that

1
2 a 4
l - |7—x+x[1-e"" ]l >5—|xf |1-e™"|. (12)

Using the inequalities e*-1 <xe* and &'-1 2x(x>0), we have

12 e'""”sae“<5— (n n > 240

i
O<e™
mn” n" 24 )

From this and (12) when 0 <x <A, we have

1
k" H 5 6
- b - - > —_—— = —
" t|28-A|1-em 2|0 =5
and hence it is shown that if m 2 1,0 <x < A[n> ZASW“]’
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(1) set >6 } set{k; |— —t

=3}

1
A —np
n’&

@

So by (11) we obtain that when 0<x<A,

1 5
hw<er y @7 o wm 5 4w ()™
& k! Ll n28? k!
n 2 n 2
—(m, oo tkm
< 4 S ey (") (13)
ny o
When m=1, by lemn1 we get
o) s 4 4e z (ke @2 __2_4xe2" =0d), 0<x<4
k' n§ né (13)
When m> 2, by Lemman 3 and (13) we get
L (x) <W— o (—) (1s)

On the other hand, using the unequality e-1 <xe* (x>0),

we obtain that in 0 <x < 4,

nm
eramemy ¢ gurin ™ < e _ (1

From this and (14), (15) and (10), we get Lemma 4.
Lemma 5%%**®! For x > 0, the following inequality holds.

) <ew \/n—x

o (nx
Z Jeond 5

In this paper we yet need the following Cauchy’s
inequality.
If a, b, (k=1,2.--) are real numbers, then

1
3 ab.< {za:-zxai}-
k=0 k=0 k=0

4. PROOF OF THEOREM
(i) the case x=0.
By (1): R (f;0)=f(0), Theorem is valid clearly.
(ii) the case 0<x<A.
By (4) we see that

28

{2+2 (1- (1) (”x)b"}

2+ g™

So by (1) and sgn x=1 (x>0) we get
RI(fx) - f(x) =

b

+ m
LHetom g

O @

2+e("") 2+e""—¢

f(x)) &) (f( "'?”) i x)))ﬂ}

200 -1 E . (16)

9&"

First estimate I, :
Using the properties (2) and (3) of the modulus of conti-

nuity and

m
— ——<e™" <]
2+ ™ _gm

(x>0), a7

we get

|11[Sewfwu(x)=e-<">"wu(xlnx~—1)5ew>'"(\lnx+1)mu\9—1). @18)
Vn n

Say g(x) =xe " (x>0).

Applying the common method of finding extreme value,
we can find that g(x) < %(—,%I) '%‘e‘%’
sequance and lim (—,}1) =1,

. since (%) is an increasing

we can see that (%)éSl, s0 g(x)=xe™" < —,ll @>0). (19)
From this and (18) we get 1 = O [(DZA(\/L)] (20)
n
Next estimate I:: _
By (16) and (17),
| <e { 3 Hf[”‘ Lreo] e ]—f(- ]' e
Orszan py

+ E I[f[ ]~f(x)](1)"[f[ }fflzrf‘lzz @21

Using the properties (2) and (3) of the nodules of continuity
It is follows that

et eob e fsono-poon -

ol it

(22)
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1 1
Butby k<& <k+1land(k+1)-k"<1 (k=21), wehave

Loy |E<L k=0
_9_;1_]@‘3 n n
T 23V 7 DS R
n n n
Further,
L
515- m‘w/‘<q£n k 1/_+ 1/_<1+k”‘—:+/ﬁ.

From this and (22), (21) we get

(nx)
k!

) bt

hi< e*"")m{4wz )
“n 1
Op<2an

} (25)

(1) When m=1. By (4) and Lemma 5, the above inedual-
ity (23) becomes the following

hi< 4am( )+e<'“7" 2 am( ) Z Je - o €2 (""") —0(0)24( )) ©<x<A).
(2) When m>2. Using Canchy’s inequality and Lemma 3, we
get by (4)

= 0™ _ (L
gb‘km_""xjﬂm_s{ykm_

(nx)
k!

w) @73

} < Y2e™",
k!

From this and (23), (4), we have

hy < 40)21«(.};’_) + e 1/1_ wZA( ) lk_ mJ (nx)

wofeufg)

By the known condition that f(x) = O(e*") and k< 6 < k +

1, we have
fm
by < 4™y o )~
k!

g5 >2.An

n

(26)

1 1 1
I 0F > 24n, thenkm _ x> G=Dm _
n n
(0<xSA,n>l)
A

1 L
It is shown that set {k;qpl > 2An} D set {k; ki _ x> ‘i}.
n 2

From this and (26) we get

29

again by Lemma 4 and the properties (4) and (1) of the mod-

ulus of continuity we get

o<l

Combining this with (25), (26), we get from (21) that

1

0w (r

)), n>3ae”
n

b2 < 0o (%)) n > max {Saez"%} O<x<A). 27)

Finally extimate Is:
By the properties (2) and (3) of the modulus of continu

ity, we have

[f(0) - £ () € @24 (2%) < (@A +1)024 (#)

again by (17), (19) and (4), we obtain from (16) that

e km
s I f 00 - F 0|3, D ("—")'—‘ < e (2avie 1) waa [ L]
<

Lo 1)) -0 ()
7 w24 7 w2 -
From this and (27), (20), (16), we obtain finally that

RY (f) - £ @) =0 was (V%))

Theorem is valid in 0<x<A.
(iii) the case -A<x<0.
Let F(y)=f(-y) and y = -x. The above (ii) implies that
RY (fy)-F () =0 (sz (F;—l—)), 0<y<A, n>max {Saeza, ;}
vn A

(28)
By the definition of the modulus of continuity, we know that

W24 ( ﬁ W24 f ﬁ (29)
o 1_ 1 et
o (ny)
Rn (F,}’) —mm F(O) + 2 ( (T‘n) ( l)kF(— %)) ni! }
1 1
. ) _ 1 5| ) ™
_2+sgnx(e<myn_e—(ny7"{ (O)+Sgnxz ( ) 0 f( n)) k! }
= R,',n 5
(fx) (30)
and
F() = F(x)={(x) 31




An Extension of the Szasz-Mirakyan Operator on the Whole Real Axis

Combining (38) with (29) (31) we obtain that infinite inteval, J.Res.Nat.Bur. Standards. Sect. B 45
(1950) ~ 245

{2] J.Grof, Approximation durch operatoren vom exponen
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[3] Rempulska lucyna and Skorupka Mariola, On approxima

=R (f)-f @) =0 (sz (;—ﬁ))
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