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ABSTRACT 

In 1986, the concept of Na-continuity was initiated by Chae et a!., this leads us to 
introduce two classes of functions, namely strongly Na-continuity and weakly 
Na-continuity. We characterize these new types. Several properties of them are 
studied. Also, their relationship with other types of functions are investigated. 
Finally, the effects of these functions on some topological spaces are established. 

INTRODUCTION 

Throughout the present paper, (X, 't ) and Y, 0' (or simply X and Y) denote 
topological spaces on which no separation axiom is assumed unless explicitly stated. 
A subsetS of X is said to be semi-open [ 11] (resp. cr -set [ 15] , ~-open [ 1] ) if 
SC cl (int(S)) (resp. SCint(cl (int(S))), SC cl(int(cl(S))), where Cl(S) (resp. int (S)) 
denotes the closure (resp. interior) of S. The complement of a semi-open is 
semi-closed [ 8] . The intersection of all semi-closed sets that contain S is called 
the semi-closure of S [ 8] and is denoted by s-cl (S). A setS is said to be feebly 
open [12] ifthere exists an open set G such that GC SC s-cl (G). A setS is called 
S -open [20] if for each x E S, there exists a regular open setH such that x E 
H C S, or equivalently, if S is expressible as an arbitrary union of regular open sets. 
0 -closure and feebly closure are defined as semi-closure, previously and denoted 
by 0 -cl (S) and f.cl (S), respectively. By RO(X) (resp. SO(X), f30(X), 0 O(X), 
FO(X)) we denote the family of all regular open (resp. semi-open, f3-open, 
0 -open, feebly open) of X. Maheshwari, et al. [12 J showed that feebly openness 
and ~-sets are equivalent. A function f:X ~ Y is called semi-continuous [ 11 ] 
(resp. 0-continuous (0-C) [17], super continuous (SC) [14], almost 
continuous in the sense of Singal (ACS) [ 18 J , feebly continuous (F.C.) [ 12] , 



Weakly Na-Continuity 

feebly irresolute (F.I.) [ 6 ] , strongly semi-continuous (S.S.C.) [ 2] , Na­
continuous (Na-C.) [ 7] ) if the inverse image of each open (resp. S -open, open, 
regular open, open, feebly open, semi-open, feebly open) set in Y is semi-open 
(resp. 5 -open, S -open, open, feebly open, feebly open, open, 5 -open) set in X. f 
is called semi-open [ 5 ] (resp a: -open [ 13] ) if the image of each open set in X 
is semi-open (resp. a: -set). Recall that a space X is called extremely disconnected 
(E.D.) if the closure of every open set is open and called submaximal if all dense 
subsets of X are open. A space X is called semi-compact [10] (resp. S. Closed 

[19] , S-closed [ 9] ) if for every semi-open cover {Ui:i E I} of X, there exists a 
finite subfamily 1

0 
of I such that:X= U{Ui:i E: 10 } (resp. X = U { cl(Ui):i E: Io}, X = 

U {s-cl (Ui) : i E 1
0

} ). A space X is called nearly compact (Singal and Mathur 1974) 
( resp. a: -compact [ 13] if every a -open ( resp. a: -open) cover of X has a finite 
subcover, X is called nearly Lindelof [ 4 ] if each regular open cover of X has a 

countable subcover. 

STRONGLY NA-CONTINUITY 

Definition (2.1): A function f:X~ Y is said to be strongly Na-continuous 
(abbreviated as S. Na-C.) if f 1(V) E 5 O(X), for each V E SO(Y) Next result 
characterizes S. Na-C. In various ways. 

Theorem (2.1): For a function f:X~ Y, the following statements are equivalent. 

(i) F is S.Na-C. 

(ii) For each x EX and each Yt(x) E SO(Y), there exists Ux E BO(X) such that 

f(Ux) C Yt(xJ· 

(iv) For each semi-closed set F of Y, £-1 (F) is -closed. 

(v) f ( 5 -cl (A)) C s-cl (f(A)), for each A C X. 

(vi) 5 -cl (t-1(B)) C £-1 (s-cl(B)), for each B C Y. 

Proof: (i) => (ii) : Left to the reader. 
(ii)c.:,>(iii): Let x E X and Yt(xl E SO(Y), by (ii), there exists (Uo)x E aO(X) such 
that f (U0 )x c Vf(xl• by the meaning o 5 -openness, there exists Ux E RO(X) such 
that Ux E (Uo)x, thus f(x) E F(Ux) C f(U0 )x CVt(xJ· 

(iii)=>(iv): Let F be a semi-closed set of Y, then Y-F E SO(Y). For each X E 
t-1(Y-F), there exists Ux E RO(X) such the 
x E UxCf-1(Y-F), and for all x E r 1(Y-F), 
t-1(Y-F) = U {Ux :x E f- 1(Y-F)} E 5 0 (X). 
Hence r 1(F) is a -closed. 
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(iv)~(v): Since A C r 1(s-cl (f(A))). for A C X, then by (iv) 
o -cl(A) C f-1 (s-cl(f(A))). Hence f( o -cl(A)) C s-cl(f(A)). 

(v) =>(vi) : Put r 1(B) instead of A in (v). 

(vi=:>(i) : Take V SO(Y), then Y-V is semi-closed, by (vi) o -cl(r1(Y-V)) 
f-1(s-cl(Y-V)) = r 1(Y-V). Thus r 1(V)} E o O(X) 

Theorem (2.2): If f:X~ Y is S.Na-C. and At 't (X). Then f/A:A~ Y is S.Na-C. 

Proof: Assume V E SO(Y). Then r 1(V)} E o O(X) which is a union of regular 
open sets Vi of X. Since A E 't (X), then Vi nA RO(A) [ 20, Theorem ( 4)] . 
Therefore, (f/A)-1(V) is the union of r 1(Vi)nA, and hence (f/A)-1(V) E o O(A). 

The following Lemma is very useful in the sequel. 

Lemma (2.1): Let {X),,/). ED} ~e a family of spaces and U ?.i be a subset of X).i for 
each i=1,2, ...... ,n. Then U= llU,..x ll.X.\;is semi-open [16) (resp. o-open 

i•t X~?.• 

[ 7]' feebly open [ 7 J) in >.U XA iff u.A.i SO(X;.i) (resp. 
U;:p E O(Xi\i), U_ti FO(Xii.J) . for each i=l, 2, ...... ,n. 

Theorem (2.3): Let f:X~ Y be a function and g:X ~xxY be the graph function of 
f defined by g(x) = (x,f(x)), for each x E X, Then. f is S.Na-C., if g is S.Na-C. 

Proof: Let x EX and Vt(x) E SO. (Y), Then by Lemma (2.1), XxV E SO(XxY), 
containing g(x). Since g is S.Na-·C., byTheorelll (2.1), there exists Ux E o O(X) 
such that : g(U) C XxV. 

Hence f(Ux) C Vt(x) 

Theorem (2.4): Let {X ex : ex E \7} be any family of spaces and f:X---;. ll X ex be 
S.Na-C. Then Pex of: x~xex is S.Na-C. _for each aexE\7. where Pex is the 
projection of n X ex onto Xo: ' for each ex E\7. 

Proof: Let Vi E SO(Xi), for a fixed j of \7, from projection properties, pi-1(Vi) = 

(Vi)X ll X ex E SO( llXo:) (Lemma 2.1). so, (Pi of)-1(Vi) = r 1(Pi-1(Vi)) = r' (Vi 

x ll Xo:) E oO(X). 

Therefore Pi of is S.Na-C., for each j E V. 

Theorem (2.5): Let fJ, :X),~ YJ. be a function for eachAED and f: llX ~ llY/, 
a function defined by f({x). }) = {f). (xf.. )} for each {x).} E llX . Iff is S.Na-C., 
then f).. is S.Na-C. for each f.. E D. 

Proof: Let~ED and V~E SO(Y~ ). Then, by Lemma (2.1) V = V~ X A~,6Y/.JS 
semi-open in TI Y).. and r 1(V) = f ~ -I (V ~ )x "TI X). is 8 -open in ll X f..· From 
Lemma (2.1), f~ -I (VJ3 )E 80(X). ~,8 

Therefore, f ~ is S.Na-C. 
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WEAKLY NA-CONTINUITY 

Definition (3.1): A function g:X---7 Y is said to be weakly Na-continuous (abb. 
W.Na-C.) if g-1 (V) E FO(X), for each V Ef> 0 (Y) 

The following result provides some characterizations of W.Na-C. 

Theorem (3.1): For a function g:X---7 Y, the following statements are equivalent. 
(i) g is W.Na.-C 
(ii) For each x EX and each Vg(x)EI>O(Y) there exists Ux EFO(X) such that 

g(U) C V. 
III) For each 8 -closed set F of Y, g-1 (F) is feebly closed 
(iv) g(f.cl(A)) C 8-cl( g(A)), for each A C X. 
(v) f.cl (g-1 (B)) C g-1 

( 8 -cl(B)), for each B C Y. 

Proof (i)::>(ii)=>(iii) Are obvious 
(iii)==>(iv) : Since A C g-1 

( 8 -cl g (A)) for each A C X. Then f.cl (A) c g-1
( 8 -cl 

g(A)). Therefore we obtain, g(f.cl(A)) C 8 -cl(g (A)) 
(iv)=~(v) : Clear. 
(v)--__:;..(i) : Let V E 8 O(Y), then (Y-V) is 8 -closed and f.cl(g-1(Y-V))C 

g-1(8-cl(Y-V) = g-1(Y-V). Thus g-1(V)E: 8 O(X). 

Theorem (3.2): The restriction function of a W.Na-C. function by any ~-open set 
is also W.Na-C. 

Proof: Let g:X---7 Y be W.Na-C. and A E: ~O(X). To show that g/A is W.Na-C., 
let VEl> O(Y), then g-1(V) E FO(X), g-1(V)nA = (g/A)-1(V)EFO(A). Therefore 
g/A is W.Na-C. 

A corresponding results of S.Na-C. have been established nextly for W.Na-C. 
which stated without proof for it is similarly by using Lemma (2.1). 

Theorem (3.3): Let f:X---7 Y be a function and g:X---7 XxY be the graph function of 
f defined by g(x) = (x,f(x)), for each xE X. If g is W.Na-C., then f is So. 

Theorem (3.4): Let {Xo: :o: E\7} be any family of spaces and g:X---7 II Xo: be 
W.Na-C., then Pty og:X---7XO: is W.Na-C., for each o: E \7 where Po: is the 
projection of IT Xo:onto X o: , for each o: E \7 

Theorem (3.5): Let go: : Xo: ---7 Ya: , o: E \7 be a family offunctions and g:l1 Xo: 
defined as g( {xo:}) = {go: (xo: )} , for each {x a }EllXa.Then go: is W.Na-C. if g is 
W.Na-C. for each a: E\7. 
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CONNECTIONS WITH OTHER TYPES 

In this section we investigate relations between S.Na-C., W.Na-C. and several 
forms of continuity. 

Remark (4-1): From the previous definitions it follows immediately that, we have 
the following implications 

ACS o-c E S.Na-C. ;) s.s.c. 

r 1 r 
sc Na-C. F.I. 

l 1/ 1 W.Na-C. 

Where C= Continuous and other abbreviations are the shown in the introduction. 
We now show that none of these implications is reversible. 

Example (4.1): For a set X = {a,b,c}, we have the following. 

(i) If 't ={<P {a}, {b}, {a,b}, then f: (X, 't )~(X, 't) define by f(a) = f(b) =a, 
and f(c) = c. is Na-C., but it is not S.Na-C. 

(ii) If 't = {<P {a}, {b}, {a,b}, {a,c}, X}, and cr = {d> {a}, X} Then 
f:(X,'t )~(X,o) defined as f(a) =a= f(b) and f(c) = b is S.S.C. but it is not 
S.Na-C. 

Example (4.2): For a set X = {a,b,c,d} , we have the following. 

(i) If't= {<P, {a,b}, {a,b,c}, X}, a ={<P,{a,c}, {a,b,c} ,X} and we define 
f:(X, 't )~(X, o) as follows f(a) = f(b)=a, f(c)=b and f(d) =c. It is clear that f is 
8 -C. while it is not S.Na-C. 

(ii) if 't = { <P, {c}, {a,b,c}, X}, 0 ={ <P ,{a},{c}, {a,c}, {a,b}, {a,b,c}, {a,b,c,d} 
·,X} . Then f:(X, 't )~(X, a) defined as follows: f(a) =f(b)=b, and f(c) =f(d) = a. 
is W.Na.C. but it is not F.C. 

Remark (4.2): Na-C. and S.S.C. are independent of each other, (i) and (ii) of 
example (4.1) show this fact. 

For any space X, the collection of all 8 -open sets forms a topology 't 8 on X. A 
basic fact which we shall exploit is that 't 8 = 't 8 

The following Theorems do not require proof. 
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Theorem (4.1): For a function f:(X, 't )~(Y, <T) , the following are true: 

(i) If Y is E.D., then f is S.Na-C. iff f is Na-C. 
(ii) If Y is submaximal, E.D., then f is S.Na-C. iff f is SC. 
(iii) f is S.S.C. iff f:(X, 1: 2)~ (Y, <J) is S.Na-C. 
(iv) f is W.Na-C. iff f:(X't)~(Y, ) is F.C. 

Theorem (4.2): Let f:X~ Y and g: Y~z be two functions, then the foli.c.wing 
statements hold. 

(i) gof is S.Na-C. if one of the next verified. 
(1) Both f and g are S.Na-C. 
(2) f is S.Na-C. and g is I. 
(3) f is -C. and g is S.Na-C. 
( 4) f is SC and g is S.S.C. 
(ii) gof is W.Na-C. if one of the following holds: 
(1) f is W.Na-C. and g is -C. 
(2) f is F.I. and g is W.Na-C. 
(iii) gof is SC , if f is S.Na-C. and g is semi-continuous. 
(iv) gof is F.C., if f is W.Na-C. and g is SC. 
(v) gof is F.I., if f is W.Na-C. and g is Na-C. 
(vi) f is super open, if g is S.Na-C. and gof is semi-open 
(vii) f is 8 -open, if g is W.Na-C. and gof is super open. 

Remark (4.3): f:(X, 't)~(Y, <1) is super open if f:(X, 't )~(Y, <5s) is open 

NEW TYPES OF FUNCTIONS AND SOME 
TOPOLOGICAL SPACES 

Theorem (5.1): The image of a nearly compact space under S.Na-C. surjection is 
semi-compact. 

Proof: Let f:X~ Y be S.Na-C. surjection , and X is nearly compact. To prove 
that Y is semi-compact , let {Vcr: cr=:\7} be a semi-open cover of Y, then { f-1 (V ) 

E\7} is o -open cover of X, but X is nearly compact, then there exists a finite 
subfamily \7 o of \7 such that : X= U { t-1 (V cr ) : cr E\7}. Thus Y =f(X) = 
U { (V cr ) : cr E\7}. therefore Y is semi-compact. 

""'"' 

Corollary (5.1): Let f:X~ Y be S.Na-C. surjection , then Y is s-closed if X is 
nearly compact. 

Corollary (5.2): The image of nearly compact under S.Na-C. surjection is 
S-closed. 
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Theorem (5.2): Let f:X- Y be a S.Na-C. surjection function and X is compact , 
then Y is sime-compact. 

Proof: Follows directly from the fact that each 8-open cover is an open cover. 

Theorem (5.3): if fX- Y is S.Na-C. surjection , and X is a semi-regular space , 
then Y is Lindelof if X is nearly Lindelof. 

Proof: Assume {(Vcr ):crE'V} be an open cover of Y, then it is semi-open cover, 
so , { f-1(Vcr ):crE'V} is 8 -open cover of X, from semi-regularization of X , 

{t-1(V cr ) : crE'V} is regular open cover, but from hypothesis , there exists a 
countable subcover with X= U {f-1(Vcr ):crE'V} . Hence Y= f(X) = U {(Vcr ): 
O:E'V}. 

Theorem (5.4): The image of a-compact space under W.Na-C. surjection is nearly 
compact. 

Proof: Obvious. 
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