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ABSTRACT 

In this paper, important notions concerning sequential spaces are clarified new ideas, one 
of which is a complete and direct proof of the fundamental theorem characterizing 
sequential spaces, are introduced. 

INTRODUTION 

Sequential spaces are topological spaces in which sequentially open sets are open (or 
equivalently, sequentially closed sets are closed). They have been studied by many 
mathematicians, but they have been studied most extensively by S.P. Franklin. He 
termed such spaces. "spaces in which sequences suffice". 

Franklin gave two proofs of this fundamental theorem characterizing sequential 
spaces as the quotients of metric spaces. However, the first (Franklin, 1965), while 
very short, is so cryptic as to obscure exactly what is intended, and the second proof 
(Franklin, 1967) comes out of a theory of covering spaces which is not essential to the 
theorem at hand. 

In part 1 of this paper we give a proof which is complete, and which on the other hand, 
we think, exposes the nature of the relationships involved. 

In part 2 of the paper we present an example, again due to Franklin (Franklin, 1967) 
which is more of a counterexample than an example. It is a countable, sequential, 
compact (and therefore sequentially compact) space with unique sequential limits. 
However, it has four properties which make it qualify as a counterexample to some 
possible conjectures about sequential spaces. These four properties are listed at the 
end of section 2. 

In section 3 we prove a theorem which contrasts with the previous example. It says 
that the product of two sequential spaces must be sequential if one of the factors is 
locally compact. In particular, if one of the factors is a compact Hausdorff space the 
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product must be sequential. This theorem was presented by one of the present authors 
at the Symposium on Convergence Structures at the University of Oklahoma, 1965, 
but it has not been published seperately. 

1. Franklin's Theorem 

Let X be a topological space, letS be a subset of X, and suppose (Xn: n=1, 2, ... )is a 
sequence of X. We say Xn is eventually inS if there is anN such that n > N implies Xn 
lies in S. 

A subset U of X is said to be sequentially open for T if every sequence which 
converges in the topology T to a point of U is eventually in U. 

X is said to be a sequential space if every sequentially open set of X is open. 

Note that in any space with a topology T the open sets are sequentially open. If Ts is 
the collection of sets which are sequentially open for the topology T, it is easy to see 
that Ts is also a topology for X and thus T8 is a larger topology than T. The topology Ts 
is called the sequential topology generated by T. Thus X is a sequential space if Ts = 
T. 

Some of the properties of sequential spaces are given by the following two theorems 
(1). 

Theorem 1. If X is a sequential space, Y is any topological space, and f is a function on 
X to Y, then f is continuous if and only if f is sequentially continuous. 

Theorem 2. If x is a sequential space then compactness, sequential compactness, and 
countable compactness are all equivalent for X; that is, if X has one of these 
properties it has the other two. 

Of course, every metric, or even first countable space is sequential. By the use of 
quotients we shall see that even more is true. 

If X is a topological space, fa mapping of X onto Y, and T0 is given by T0 = { + Y: 
f-1 

( -Jj.) is open in X} the T 0 forms a topology for Y. When Y has this topology we say 
is the quotient f X under the mapping f. 

Franklin has pointed out the following important property of sequential spaces. 

Theorem 3. The quotient of a sequential space is sequential space. For completeness 
sake we give the simple proof. 

Proof. Let + be a sequentially open set in Y. Let Xn--+ x as n--+ oo, where x lies in 
f-1

( + ). Since a quotient map is continuous, f(xn)--+ f(x) as n--+ oo , and since + is 
sequentially open f(xn) is eventually in +.Thus Xn is eventually in f-1( -1J ). It follows 
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that t-1
( "' ) is sequentially open, and therefore open in X. Thus "' is open in the 

quotient topology for Y. 

Since metric space are sequential spaces, we have a corollary. 

Corollary 1. The quotient of a metric space is a sequential space. 

The important theorem of Franklin which we want contains the converse of this 
statement. 

Let X be a topological space, and let J be the positive integers. Then X1 is the set of all 
sequences on X. 

We shall assume the following terminology. Let X be a topological space. Then 

I) A = A(T) = { a=(f,x): f E X1 and f(n) ~ x in T as n ~ oo } 

II) s = { 0 } U { 1/n: n=1,2 ... } 
III) s = s X A. 

We define a metric, p, on S by 

IVa) p((y,a), (z,b)) = 1 if a = b 
IVb) p((y,a), (z,a)) = I z-y 1. 

We define a mapping, F, of S onto X by 

Va) F((1/n, (f,x)) = f(n) 

Vb) F((O,(f,x)) = x. 

In what follows T is the initial topology on X, T 0 is the topology obtained when X is 
the quotient of S under the mapping F given in V) above. The topology T8 is the 
sequential topology generated by T. 

Lemma 1. For any topological space X, we have T0 C T8 • 

Proof of Lemma 1. Take U C X such that F-1 (U) is open in S. To show U is 
sequentially open forT, pick x in U and suppose that f(n) ~ x in T. We need to show 
f(n) is eventually in U. Now a= (f,x) is in A, (O,(f,x)) is in F-1(U), and (1/n, (f,x)) ~ 
(O,(f,x)) inS as n ~ oo • It follows that (1/n, (f,x)) is eventually in the open set F-1(U), 
and therefore F((lln,(f,x)) = f(n) is eventually in U. Thus U is sequentially open for 
T, which is to say U belong to T8 • 

Lemma 2. For any topological space X we have T C T0 . 

Proof of Lemma 2. We need to show that if "' is open in T then "' is open in T0 . 

This will be true if F-1
( l\1 ) is open in S for each \jJ in T i.e. if F is a continuous 

function on S to (X,T). Since S is metric it is sufficient to show F is sequentially 
continuous. 
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Suppose Zt = (Yt. at) is a sequence of S which converges to z= (y, aa) in S ask--+ oo • 

Because of the definition of the metric p, ak = aa for all sufficiently large k, and Yt--+ y 
in s when s has the usual topology induced from the real line. we can thus assume that 
ak = a0 for all k, and there are two cases to consider. First, the case where y =the 
reciprocal of an integer and second the case where y = 0. 

Now, if y = iln0 or some positive integer D0 , then { z} = { (y,a)} is an open set inS 
and it must be that Zt = z for sufficiently large k. Thus F(zt) --+ F(z). 

In the second case, y = 0. It is only necessary to consider those values of k such that Yi 
=I= 0. Thus we shall suppose Yt = 1/nk for some positive integer nk, k = 1, 2, .... Since 
Yt --+ 0 in s, we have 
(1) nk --+ oo as k --+ oo • 

Now F(zt) = F(llnt. (f,x)) = f(nt) and F(z) F(O,(f,x)) = x where 

f(n) --+ x 

In T as n--+ oo • We want to show f(nt)--+ x in Task--+ oo • We shall use the Urysohn 
Property to do this. 

Urysohn Property.lf (X,T) is a topological space and (xj: j=1, 2, ... )is a sequence in x 
with the property that every subsequence has a subsequence which converges to x, 
then xj --+ x as j --+ oo • 

In view of (1). every subsequence of the sequence nk has an subsequence nj which 
increases with j. thus f(nj) is a subsequence of f(n). Since f(n) --+ oo x in T, the 
subsequence f(nj)--+ x in T as j--+ oo • By the Urysohn Property, the sequence f(nt)--+ 
x in T as k --+ oo • This proves Lemma 2. 

Franklin's Theorem. A topological space is sequencial if and only if it is the quotient 
of a metric space. 

Proof of Theorem. By Lemmas 1 and 2, for any topological space with topology T we 
have T C T0 C T8.1fT is sequential then T = Tthus T = T

0 
= T

8
, which proves 

the theorem. 

For any topology T on x it is easy to see that A(T) = A(T
5
). Thus the class of 

convergent sequence of any topology on X is also the class of convergent sequence for 
a sequential topology on X. Therefore we have te following corollary. 

Corollary 2. For any topology Ton X the set of convergent sequence is the same as the 
convergent sequences for a topology on X which is the quotient topology obtained 
from a metric space. 
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2. An Interesting Example 
We shall give an example of a compact, countable, sequential space, X with four 
important properties. 

In the construction of X we shall utilize five disjoint subsets of R2 which we call S1,h 

sl,2• s2, s3, and s4. 

Let S = S1,t U S1,2 U S2 U S3 U S4 where: 

S1,1 = { (1/n, 1/m): n,m = 1,2, ... } 
S1,2 = { (2+ 1/n, 1/m): n,m = 1,2, ... } 
s2 = { (1/n,y): n=1,2, ... , -1 < y ~ 0 } 
s3 = { (2,Y): o ~ y ~ 1 } 
s4 = { (0,-1) } 

It is important for the example that S3 is a compact interval. 

Give S the topology induced from R2
• Thus S is a metric space. 

Let x be the imagine of S under the map f defined as follows: 

on St>1 f(1/n, Vm) = (1/n, 1/m) Define X1 = f(St> 1) 

on S1,2 f(2+ 1/n,1/m) = (1/n, lim) Then also X = f(s1,2) 

on S2 f(lln,y) = (lln,o) Define X2 = f(S2) 
on S3 f(2,y) = (0,1) Define X3 = f(S3) 
on S4 f(O, -1) = (0,0) Define X4 = f(S4). 

Thus X= xl u x2 u x3 u ~where xl = sl,h Xz = { (1/n,O): n = 1, 2, ... }, x3 = 
{ (0.1) }, and ~ = { (0,0) }. 

Give X the quotient topology from S under the rp.apping f. 

For each z = (x,y) in X a basis of neighbourhood, V(z), in the quotient topology can 
be seen to be: 

for z = (1/n, lim) in xl 

{ z } is an open set in X1 

for z = (lln,O) in X2 

V(z) = { V(z, e): V(z, e) = { (lln,y) E X: 0 ~ y ~ c }, E- > 0 } 

for z = (0,1) in x3 

V(z) = { V(z,N) V(z,N) = { (0,1)} U { (lln,y) E X: y > 0, n ~ N }, N ~ 1} 

for z = (0,0) in ~ 
V(z) = { V(z) : V(z) = U V((lln,O), ~) U { (0,0) }, en > 0, N ~ 1 }. 
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From the description of the neighbourhood bases it can be seen that any open 
covering of X has a finite subcovering. Thus, X is compact. We can also obtain the 
following properties of the space X. 

Property 1. X is a sequential space, but it is not a first countable space. 

Since X is the quotient if the metric space S it is a sequential space; however the point 
(0,0) does not possess a countable neighborhood base therefore X is not first 
countable. 

Property II. X has unique sequential limits, but X is not Hausdorff. 

Given any pair of points z and w in X there exist disjoint neighborhoods of z and w 
unless { z,w } = { (0,0), (0,1) }. But from the above characterization of the 
neighborhood base at (0,0) it can be seen that any sequence which converges to (0,0) 
must eventually lie in X2 U ~-Since (0,1) has a neighborhood disjoint from X2 U X4, 

X has unique sequential limits even though X is not Hausdorff. 

Property III. X has a subspace, namely, Y = X - X2, which is not sequential in the 
topology induced by X. 

In fact the set { (0,0)} is sequentially open in Y since no non-constant sequence from 
Y converges to (0,0). However the set { (0,0)} is not open in the induced topology. 

Property IV. The product space X x X is not sequential in the product topology. 

Let /::;. = { (x,x): x in X } be the diagonal in X x X. By a well known theorem, 
(Bouvbeki 1951), a topological space is Hausdorff if and only if the diagonal is a 
closed subset of the product space. Thus the diagonal is not closed in X x X. 
However, since X has unique sequential limits it is easy to see that the diagonal is 
sequentially closed in the product space. Since X x X contains a set which is 
sequentially closed but not closed, X x X not a sequential space. 

3. A Theorem on Products 

In contrast to the previous example we shall prove a theorem which shows, in 
particular, that the product of two sequential spaces, one of which is a compact 
Hausdorff space, must be sequential. 

Theorem 4. If X and Y are sequential spaces and Y is locally compact then X x Y is 
sequential. 

Recall that by Theorem 2, compactness is equivalent to sequential compactness since 
Y is a sequential space. 
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Lemma 3. If X andY are sequential spaces, W is a sequentially open subset of X x Y, 
and (x,y) lies in W, then there is a neighborhood U of y such that 

(x,U) = { (x,z): z in U } C W. 

Proof of Lemma 3. The mapping y ~ (x,y) is sequentially continuous on Y to X x Y 
and thus it is continuous when X x Y is given the sequential topology associated with 
the product topology on X x Y. Thus the inverse image of the sequentially open set W 
is an open set U. 

Proof of Theorem 4. Let W be a non-empty sequentially open in X x Y which 
contains the point (x,y). We shall show that W contains a set of the form (V,U) where 
Vis a neighborhood of x and U is a neighborhood of y. By Lemma 3, W contains 
(x, U) for some compact neighborhood U of y. Let V be the largest set such that (V, U) 
is contained in W. If Vis not open there exists a sequence Xn in the complement of V 
such that Xn ~ X0 for some X0 in V. 

For each n = 1,2, ... , since Xn lies in the complement of V, there exists Yn in U such 
that 

and since U is sequentially compact, with no loss of generality, we can suppose that 
Yn ~Yo for some Yo in U. Thus (xn,Yn) ~ (xn,Yn) ~ (x0 ,y0 ) in X X Y, since W is 
sequentially open in X x Y, we must have 

for sufficiently large n. 

The contradiction between (2) and (3) shows that V must have been open. 

Corollary 3. If X andY are sequential spaces, andY is a compact Hausdorff space, 
then X x Y is sequential. 

Since a comact Hausdorff space is locally compact, the corollary follows from 
Theorem 4. 
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