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ABSTRACT 

In this paper we present a newapproach to a symbolic treatment of quan-tified statements having the fol­

lowing form "Q A's are B's", knowing that A and Bare labels denoting sets,and Q is a linguistic quantifi­

er interpreted as a proportion evaluated in a qualitative way.Our model can be viewed as a symbolic gen­

eralization of statistical conditional probability notions as well as a symbolic generalization of the classi­

cal probabilistic operators. Our approach is founded on a symbolic finite M-valued logic in which the grad­

uation scale of M symbolic quantifiers is translated in terms of truth degrees. Moreover, we propose sym­

bolic inference rules allowing us to manage quantified statements. Finally, we present a symbolic formal­

isation of direct inference principle allowing us to reason with particular individuals. 
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l.lntroduction 

In the naturallanguage,one often uses statements qualifying statistical information like "Most stu-dents 

are single", called quantified assertions. More formally,these quantified assertions have the fol-lowing 

form "Q A's are B's", where A and Bare labels denoting sets, and Q is a linguistic quantifier interpreted 

as a proportion evaluated in a qualitative way.In this paper,we propose a new approach to such quantified 

assertions within a qualitative context.More precisely,our goal is threefold: (1) to propose a symbolic rep­

resentation of quantified assertions, (2) to develop syllogistic reasoning allowing us to deduce new quan­

tified assertions from the initial ones,and (3)to deduce new informa-tion concerning a particular individ­

ual from a set of quantified assertions. 

Zadeh [36]distinguishes between two types of quantifiers:absolute and proportional.An absolute quan­

tifier evaluates the number of individuals of B in A. While a proportional quantifier evaluates the propor­

tion of individuals of B in A. The proportional quantifiers can be precise or vague. A precise quantifier 

translates an interval of proportions having precise bounds exemplified by "10%", "Between 10%and 

20%", etc. While a vague quantifier translates an interval proportions having fuzzy bounds. Thus the vague 

proportional quantifiers express qualitatively proportions. A proportional quantifier can be viewed as a 

kind of probabilities assigned to classes of individuals. So,several approaches based on the theory of prob­

abilities have been proposed ([22], [30], [7], [4], [3], [5], [13]) for the modeling of precise proportional 

quantifiers. Other probabilistic approaches,such as those proposed by ([24], [25], [6]), do not enable an 

adequate representation of proportional quantifiers,since these approaches are generally introduced to treat 

uncertainty. These authors interpret the probability degrees assigned to propositions as degrees of certain­

ty or beliefs in the truth of these propositions. They represent statistical assertions of type "Q A's are B's" 

as uncertain rules of the form: "if A then B" with a belief degree in the truth of the rule (A and Bare inter­

preted as propositions). It has been pointed out by Bacchus [4] that a confusion in the representation is 

made between the probabilities interpreted as certainty degrees assigned to propositions about particular 

individuals and those interpreted as proportions assigned to classes of individuals. The probabilities of the 

first type are called subjective and the second statistical. The statistical probability that corresponds to the 

proportion is a particular case of probabilities where the distribution is uniform over the finite reference 

set. For example, the statistical probabil-ity attached to a subset A of the finite reference set n, Prop( A), 

is equal to the absolute proportion of individuals of A, i.e., Prop (A)= lA 11101. Similarly, if A and B are 

two subsets of n, the relative proportion of individuals of B in A is expressed by the conditional statisti­

cal probability, Prop (BIA), with Prop (BIA) =Prop (An B) I Prop (A) = lA n B 1/IAI. 

Some probabilistic approaches ([1], [29], [4], [5]) are interested in a qualitative modeling of the pro­

portional quantifier "Most" or "Almost-all" in the context of default reasoning. The approaches based on 

the fuzzy set theory ([9], [36], [33], [34], [7], [10]) deal with a vague proportional quantifier as a fuzzy 

number of the interval [0,1] which can be manipulated by using the fuzzy arithmetic. For example, the 

membership function of "Most" evaluates the degree to which a given proportion is compatible with the 
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quantifier "Most". The representation of quantified statements involving fuzzy sets is based on the con­

cept of fuzzy subset cardinality. Recently, Dubois et al. [8] have proposed a semi-numerical approach to 

the vague quantifiers based upon the numerical results obtained in ([7], [3]) for precise quantifiers. It is 

concerned with a suitable ordered partition of the unit interval [0,1] in several subintervals covering [0,1], 

each subinterval representing a vague quantifier. The subintervals obtained by applying the inference rules 

(on the precise quantifiers) to subintervals representing the vague quantifiers are approximately associat­

ed to subintervals of vague quantifiers. 

Now, being able to represent quantified statements, like "Most birds fly", it is interesting to obtain belief 

symbolic degrees attached to properties about particular individuals, like "Tweety flies", and this, by using 

knowledge based upon quantified assertions and certain facts. In other words, it is necesarry to propose a 

symbolic model based upon a direct inference principle and a choice strategy of the appropriated reference 

class ([31], [22], [30], [4]). Reasoning about particular individuals is often based upon statistical pieces of 

information in the sense that the subjective probability associated to a property about a particular individ­

ual is derived from the proportion of individuals verifying this property (for example, knowing that "Most 

smokers may have lung cancer", a doctor thinks that it is very-probable that Martin which is a smoker will 

have a lung cancer). This direct inference is used to derive symbolic certainty de-grees from quantified 

assertions and facts (certain information). The proposed model is built upon M-valued predicates logic 

defined by Pacholczyk [26]. Symbolic quantifiers and symbolic certainty degrees are translated in terms 

of truth value of two new predicates added to the language and taking into account the two notions of prob­

ability. The use of two distinct predicates (called Prop and Cert) allows to describe the two different 

notions of probabilities (both in a syntactical and a semantical as-pect). This new predicates are interpret­

ed in different ways and are related to different symbolic degrees. In the first part of this paper (devoted 

to the first goal of our work), we present a symbolic representation of quantified assertions, and their fun­

damental properties. In Section 2, we present theM-valued predicate Logic proposed by Pacholczyk in 

([26], [27], [28]). Section 3,describes our symbolic representation of statistical probability. The Axioms 

governing this representation and certain properties generalizing symbolically some classical properties 

are presented in Section 4. Section 5 is devoted to the second goal of our paper ([15],[16], [17], [18], [19], 

[20], [21 ]), that is to say, syllogistic reasoning based on quantified assertions. The third goal of our work 

concerns the two last sections. In Section 6, we prsent our symbolic representation of subjective probabil­

ity. In Section 7, we present a symbolic formalisation of direct inference principle leading to areasoning 

process allowing us to deal with particular individuals ([16]). Finally,in Section 8 we make link with ?rob­

abilistic works of Bacchus [4] and Bacchus et al. [5]. 

2. Many-valued Predicate Calculus 

We present the many-valued predicate calculus proposed by Pacholczyk in ([26]). Notice that this many­

valued logic has been proposed to the processing of imprecise information. 
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2.1. Algebraic Structures 

Let M ~ 2 be an odd integer. Let M be the interval [ 1, M] of integers totally ordered by the relation :::;, 

and n be the mapping defined by n(a) = 9J1 + 1- a. Then, {9J1, v, A, n } is a De Morgan lattice with: 

a v ~ = max (a, ~) and a A ~ = min (a, ~). Let .2M = { ta, a e 9J1} be a set of M elements totally ordered 

by the relation:::; such that: ta:::; t~ ¢:::}a:::;~. Thus {.2M,:::;} is a chain in which the least element is t
1 

and 

the greatest element is tM. We define in .2M two operators and a decreasing involution as follows: 

ta v t~ = tmax<a.Jl>' ta At~= tmin(a'~> and~ ta = tn<ar Linguistically speaking, .2M can be viewed as a set of scal­

ing adverbs. For example, by choosing M = 7, we can define .2
7 

as follows: .2
7
= {not at all, very little, lit­

tle, moderately, very, almost, totally}. In order to deal with vague predicates within our M-valued logic, 

LM will be interpreted as a set of linguistic truth degrees. Then, .2M will be denoted as: LM = ta - truce, a 

e 9J1}. So, previous example gives us: L7 = {not at all-true, very little-true, little-true, moderately-true, 

very-true, almost-true, totally-true} 
1
• On considers that the linguistic expression va in the statement "x is 

va A" (A becomes a many-valued predicate) is associated with ta-true the degree to which x satisfies A, 

i.e. the truth degree ta-true of A(x). So, we have: "John is very tall"is true¢:::} "John is tall" is very-true. 

2.2. Interpretation and Satisfaction of Formulas 

Let .2 be the many-valued predicates language and F the set of formulas of .2. We call an interpretation 

structure Q( of .2, the pair < c.t), {Rn In e N} >, where c.t) designates the domain of Q( and Rn designates the 

multisee associated with the predicate P n of the language. We call a valuation of variables of L, a sequence 

denoted as v = <v0, ••• , vi-I, vi, vi+P ... >. The valuation s(i/a) is defined by v(i/a) = <v
0

, ••• , vi_
1
, a, vi+l' ... >. 

Definition 1: For any formula«<> ofF, the relation of partial satisfaction "s satisfies«<> to a degree Ta in­

Q( "or" s Ta-satisfies «<> in-U", denoted as Q( = vr «<>is defined recursively as follows: 

- Q( t=: pn (zo, ... , ~) ¢:::} < (vo, ... , vk) > EaRn, 

- Q( ._ v --. 0 ¢:::} { Q( = v 0 with t = ~ t } ra ~ a ~ ' 

-Qlt=:0nV¢:::} {Ql=v~0andQ£=~ Vwitht~A tr}' 

- Q( t=: 0 u v ¢:::} { Q( = v~ 0 and Q( =; v with ta = t~ v ty}, 

- Q( F=: 0 :::::> V ¢:::} { Q( = vll 0 and Q( = ~ V with ta = t~ ~ tr}' 
v (n/a) 

- Q( Fv 3 z 'I'T =Max {t I Q( = r P, a e D}. 
a n a y 

• v(n/a) 
- Q( Fv '<;/ z 'J'¢:::} Mm {t I Q( = r P, a e D}. 

a n y 

Definition 2: A formula«<> is said to beta-true in U, if and only if, there exists a valuations such that 

s ta-satisfies «<> in-Ql. 

3. Symbolic Representation of Statistical Probabilities 

The representation of statistical probabilities requires the reference to sets of individuals and also to 

assign probabilities to these sets. To solve the first problem, we use the concept of placeholder variables in 

lambda abstraction used by Bacchus [4], where one considers that a Boolean open formula can refer to the 

I. Note that "not at all-true"and "totally-true"correspond respectively with the classical truth values "false"and "true". 

2. The multiset theory is an axiomatic approach to the fuzzy set theory.ln this theory, x e a A, the membership degree to which x belongs to A, corresponds 
with ~A (x) = a in the fuzzy set theory of Zadeh [35]. 
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set of all instances of its free variables, specified as placeholders,satisfying the formula. So given a many­

valued predicates language .2, for an interpretation Ql* with domain of discourse n and cl the set of open 

well-formed formulas without bound variables 0 of<g such that,for any valuation v of n, 0 is totally satis­

fied in-U* or not at all satisfied in- Ql*. So: C1 = {0 e F I 'ifv, u* = ~ 0 or Ql* 1=: 0}. Since formulas ofC1 

contain only free variables,we can consider that free variables of formulas ofC1 stand implicitly for place­

holder variables. Thus in interpretation Ql*, each formula of C1 will be able to make reference to the subset 

of individuals of n that satisfy this formula. 

In order to define the symbolic statistical probabilities assigned to subsets referred by formulas of Cl' 

we add to the language .2, anew many-valued unary predicate, denoted as Prop, defined over formulas of 

C1 which qualitatively takes into account the notion of proportions of sets referred by formulas of C1. We 

are going to extend the structure interpretation of the language Ql* to Ql with domain n u C~' and we sup­

pose that the variable <p designates the argument of Prop, and that any valuation v comprises v 
0 

that is 

associated to a. . 

A symbolic proportion Q" of elements of n totally satisfying 0 with respect to uniform probability dis­

tribution on n. So, Q" can be considered as the symbolic degree of statistical probability of the set A 

referred by 0 in n, i.e. the absolute proportion of elements of n which are in A . .2in guistically speak:­

ing,this can receive the following translation: "A proportion 0 of individuals ofO are inA", which is clas­

sically denoted "0 O's are A's". Then, the managing of statistical probabilities can be handled by enrich­

ing the syntax and the semantic of our 9Jl-valued logic by adding a particular predicate Prop with a for­

mation rule based on this predicate,and the axioms governing the use of formulae referring to Prop. Of 

course, in order to obtain a theory of symbolic statistical probabilities, these axioms may be justified at a 

metalogicallevel. We can now put the following definition: 

Definition 3: The predicate Prop is defined as follows3
: 

-For any interpretation Ql 'if <p E cl Prop (<p) E <g.a. 

- Any interpretation Ql associates to Prop a multiset of Cl' denoted as el, so that for all valuation v, if 0 is 

an element ofC1, we have: Qll=:(o/e) Prop (<p) ~ <0> e"el ~Prop (0) is t"-true-in-U. 

Convention: If no confusion is possible Ql ="Prop (0) stands for Qll= :<ole) Prop (<p) 

As noted before, this definition can receive the following translation: "Q" O's are A" (i.e. a proportion 

Q" of individuals of n are in A). So, it is possible to associate with any t"e .2M a vague proportional quan­

tifier denoted Q". In the following, we denote as OM ={Q", a. e 9Jl} the resulting set of proportional quan­

tifiers. 

Choice of quantifiers 

By choosing M = 7, we can introduce:~= {none, very-few (or almost-none), few, about half, most, 

almost-all, all} that corresponds to the symbolic degrees of statistical probability. 

The previous defintion leads to the following one. 

'Prop bas been introduced in a similar way as the predicate Prob in [28]. 
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Definition 4: Let OM be the set of the vague proportional quantifier~ . .(.1M = { Q", a E [ 1 ,M]}. Then, 

"Q( I= aProp (0)" will mean that "Q", individuals of n totally satisfy a in-Ql", if and only if, the subset 

referred by 0 belongs to the multiset <5 with a degree 't". 

Let us now consider quantified assertions, like "Most birds fly", classically denoted in the following 

form "Q A's are B's". The idea proposed for the representation of"Q A's are B's" is to interpret it in terms 

of the symbolic relative (or conditional) proportion of individuals of B in A. Therefore, we can general­

ize the classical definition of conditional statistical probability in a symbolic context, by using a "symbolic 

probabilistic division" operator, denoted as C, or equivalently a "symbolic probabilistic multiplication" 

operator, denoted as I. These two operators have been defined in ([28],[32]) for the symbolic representa­

tion of conditional uncertainty. The operator I is an application of 0 ~ into OM, that verifies the classical 

properties of the probabilistic multiplication (commutativity, absorbent element: Q,, neutral element: QM, 

monotony, associativity, idem-potence: QJ The operator C is an application of 0 ~ into <p (OM), which is 

the set of parts of OM. C is deduced from I by a unique way as follows: Q E C (Q , Q ) ~ Q, =I (Q , Q ). 
~ a J.. ~ a ~ 

Among the different tables of the operator C which verify the axioms chosen in [28], in i\ we have cho­

sen Table 1 presented in the annex. The corresponding operator I is defined in the annex by Table 2. 

By using the previous definition of absolute statistical probability, we can define the notion of condi­

tional statistical probability of v given 0, denoted as Q( = Prop ( 'l' l0), which can be viewed a as symbolic 
~ 

generalisation of conditional probability in classical probability theory. 

Definition 5: Let o and 'l' be formulas of C
1
, the symbolic conditional statistical probability of v given 

o, denoted as Q( I= Prop ('l' I o), is defined by the symbolic division of the symbolic degree of Prop 
I' 

('l' no) by that of Prop (o) as follows:{Q! I= aProp (o), Q( I= "Prop (v no), U ::=::> Q( I= ~'Prop ('l' In) with 

Q E C (Q,rQ;.). 
I' 

In order to obtain an equivalent manipluation of sets and formulas of type "Q( I= ~Prop (v I 0)", we can 

use the usual notation of quantified satatements. If we suppose that 0 and v refer respectively to subsets A 

and B of n in the interpretation A, previous equivalence leads to the following definition: "Q( I= lrop 

('l' I 0)" ~ "Q~ A's are B's". Moreover, T being a tautology we have: Q( 1= ,.Prop (0 IT)~ Q( ="Prop (0). 

In other words, absolute probability appears as a particular case of conditional probability: "Q" O's are 

A's" ~ "Q( I= ,.Prop (0)". Thus, previous definition can be rewritten as follows: 

Definition 6: Given an interpretation Q£, let us suppose that the formulas 0 and v refer respectively to 

the subsets A and B of n. Then, the following assertions are equivalent: 

- if {Q£ I= ,.Prop (0) and Q( I= ~.,Prop ( 'l' n 0)}, then Q( I= lrop ( 'l' I 0) with Q~ E C (Qa,Q~.,), 

- if {Qcx O's are A's and Q~., O's are (An B)'s}, then "Qfl A's are B's" with Q" E S (Qa,Q~). 

Remark 1: It appears that: "{Qcx, O's are A's and Q~., O's are (An B)'s}, then "Q" A's are B's" with Q" 

E C (Qa,Q~)" be viewed as a symbolic generalisation of the classical property: Prop (B lA) = Prop(A n B)/ 

Prop( A) = lA n B 1/IAI. 

Example 1: By using Q7 ,let us suppose that the domain of discourse consists of residents of the city V. 
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Knowing that: "Most residents of the city V are young" and "Half of residents of the city V are young sin­

gle". These assertions are respectively translated in our model by: "Q
5 

Q's are Young" and "Q
4 

Q's are 

Young 11 Single". Definition 6 gives us: "Q~ Young are Single" with Q)l E C (Q
5

, Q
4

) = {Q
5
}. Then we 

obtain: "Most young people are single". 

4. Axiomatic and Properties of Symbolic Statistical Probabilities 

We can now put the axioms governing the concept of symbolic statistical probabilities. Each of them is 

justified at a metalogicallevel.In the following, A and B denote subsets of n. 

Axiom 1: A 11 B -:f. A, "Qa O's are A's" and "Qa Q's are (A 11 B)'s"and Q E [Q
3

, QJ =}Almost-All A's 

are B's". (Axiom defining "Almost-all"). 

Qualitatively the subsets A and A 11 B can have the same symbolic degree of proportions without being 

equal. This is the case, when A 11 B is equal to the set A without one or some individuals. This can quali­

tatively be translated by saying that "A and A 11 B are almost equal" or "Almost-all A's are B's". This is 

not always the case when the proportion of A is very weak (associated with Q
2 

=Very-few). 

Axiom 2: "Qa O's are A's", Qa E [Q
2

, Q
7

] and "Almost-All A's are B's" =} "Qa O's are (An B)'s". 

(Axiom defining "Almost-all"). 

When we have "Almost-all A's are B 's", we know that A -:f. A 11 B, but we can say that A and A 11 B are 

almost equal and therefore A and A 11 B have the same symbolic degree of proportions. 

Axiom 3: "Qa Q's areA's" <=> "Qn(a) O's areA's with n (a)= M + 1 -a". (Axiom defining the dual quan­

tifier). 

Generally the dual quantifier of Qa corresponds with Qn(a) ("Few" is the dual quantifier of "Most"). 

Axiom 4: "Qa Q's are A's", "Q~ O's are B's", Au B -:f. nand A 11 B = 0 =} = "Q, O's are (Au B)'s" 

with Q, E S (Qa, Q~). (Axiom defining the symbolic proportion of disjoint sets union). 

Classically, when A and Bare disjoint, the absolute proportion of their union is the sum of their absolute. 

If the union A and B is different from n (otherwise, the symbolic proportion degree of their union is evi­

dently QM) and that they are disjoint, then the symbolic proportion degree of their union belongs to the 

"symbolic sum" of their symbolic proportion degrees. The symbolic sum denoted S is introduced in a way 

that it gives an interval containing one or two values. The lower bound of this interval is greater than or 

equal to each symbolic value of two arguments of S. Since the set Au B is different from n, the maximal 

degree that can take the upper bound of the interval is QM_
1

• The use of an interval rather than a single 

degree is due to the degree Q
2 

.It is justified by the fact that the addition of one or some elements (i.e., a 

very weak quantity) to a set can either preserve its symbolic degree of proportion or increase it at most one 

degree. 
M 

Definition 7: The symbolic additionS is a commutative application of 0 
2 

into 1) (OM). By supposing 

that a+~ :S M + 1, Sis defined as follows: 
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{Qa} if t3 = 1 

[Qa+~2' Qa+~l] if 

S (Qa,Qp) = a# 1, l3 # 1, a+ l3 ~ M 

{QM_1} if a+ t3 = M + 1 

In agreement with Axiom 3, it is necessary to have a+ l3 ~ M+ 1. Indeed, An B = 0 implies that B c A. 

Now Axiom 3 gives Q cn(a)A. Intuitively l3 ~ n(a.) (for, B c A) therefore, a+ l3 ~a+ n(a) = M + 1. 

Defining Inf and Sup as two applications of Q
2
M into QM, we obtain respectively the lower bound and 

the upper bound of an interval ofQMso we can write: S (Qa,Qp) =[Info S (Qa,Qp), SupoS (Qa,Qp)] or more 

simply [InfS (Qa,Q,), SupS (Qa,Qp)]. We can prove that the applications InfS and SupS verify the prop­

erties of a T-conorm (commutativity, neutral element,monotony,associativity) 

Definition 8: GivenS, we can define the "symbolic subtraction "denoted D as an application ofO~ into 

1) (OM) such that: if Q, E S (Qa,QJl), then Q, E D (Q,,Q), and Q, E D (Q,,Qp). Then D can be deduced 

from S: 

{QJ ift3 = 1 

{ Q2} if r = t3 E [2, M - 1] 

D (Q,,Qp} = [Qr+l-Jl' Qr+2-Jl] if 

2~t3<r~M-1 

Remark 2: In this paper, forM= 7 we obtain the operators Sand D defined by Tables 3 and 4 (see Annex). 

Let A and B be subsets of n. The following properties can be viewed as symbolic generalization prop­

erties of classical statistical probabilities. The proofs of the properties can be found in ([21]). 

Proposition 1: If "Q Q 's are A's" and A c B then "Q Q 's are B 's" with Q < Q . a ' a a- P 

Proposition 2: If "Qa Q's are A's", "Q'- Q's are (An B)'s" and A# n, then "Q'- Q's are f. \B's" with Q
1 

ED (Qa, QJ. 

Proposition 3: lf"Qa Q's are A's", "QP Q's are B's", "Q
1 
Q's are (An B)'s" and Au B # n, then "Q, Q's 

are (Au B)'s" with Q, E U (Qa, QP, QJ where U (Qa, QP, QJ = [InfS (Qa, lnfD (QJl, QJ), SupS (Qa, SupD 

(QJl,QJ)] if a+ l3- A~ M- 1, and U (Qa,QJl,QJ = {QM_) if a.+ l3- A =M. 

Proposition 4: lf"Qa Q's are Ns", "QJl Q's are B's", "Q, Q's are (A u B)'s" and Au B # n, then "Q'-Q's 

are (Au B)'s" with Q'- = Q2 if a+ l3- r =1 and Q'- E [lnfD (QP, SupD (Q,, Q)), lnf {SupD (Qb, InfD (Q,, 

Q ,)), Q, Q } ] otherwise. 
a a b 

5. Syllogistic Reasoning 

Reasoning on quantifiers is called by Zadeh [36] syllogistic reasoning, where a syllogism is an infer­

ence rule that consists in deducing a new quantified statement from one or several quantified state-ments. 

As an inference scheme,a syllogism may generally be expressed in the form: 
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Q A's are B's 
Jll 

Q C's are D's 
1'2 

Q E's are F's with Q E [Q , Q ] c [Q ,Q ]. 
I' I' x y ~ I M 

Where E and F are sets resulting from application of operators set on A, B, C or D, and bounds Q and 
X 

Q are in accordance with Q or Q . 
y Jll 112 

The quantifier "All" is represented by the implication using the quantifier 'V in classical logic or by the 

inclusion in set theory. The classical implication and the inclusion propagate inferences by transitivity, 

contraposition, disjunction or by conjunction. From one or several statements quantified by "All", these 

inferences enable to generate new statements likely quantified by "All". Nevertheless, most of these infer­

ences are not valid for other quantifiers, i.e., for Q e [Q ,Q ]. For example, from "Most A's are B's" 
11 2 M-1 

and "Most B's are C's" one can not always have "Most A's are C's". That is due to the fact that the infer-

ence by transitivity is not valid for the quantifier "Most". The invalid inference has been considered as a 

case of total ignorance. 

We present some syllogisms. Each of them is illustrated by an example. The proofs ofthese syl-logisms 

can be found in ([21 ]). 

Proposition 5. (Relative Duality) 

Q A's are B's 
Jll 

Q A's are A\ Band Q A's are B's 
112 1'2 -

with Q = Q if Q -:/= Q 
112 n(Jll) Jll D(Jll) 

and Q E [Q Q ] otherwise. 
112 n(Jll)' n(Jll) + I 

Example 2: Almost all students are unmarried 

Very few students are married. 

Proposition 6: (Mixed Transitivity): 

Q A's are B's 
Jll 

All B's are C's 

Q A's are C's with Q < Q 
112 Jll - 1'2 

Example 3 

Most students are young (less than 25 years) 

All young people are non retired 

At least most students are non retired. 
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Proposition 7: (Exception) 

Q A's are B's 
I' 

All C's are A's 

All C's are B 

Q A's are C, with Q E [Q , Q ]. 
y I' M-1 

Example 4 

Most birds fly 

All ostriches are birds 

All ostriches do not fly 

Most or almost all birds are not ostriches. 

Proposition 8: (Union Right) 

Q A's are B's 
1'1 

Q A's are C's 
1'2 

Ql' A's are (B U C)'s, with Ql' E [QMax(~t 1 ,1'2l' QM_J 

Example 5 

Most students are single 

Very few students are taxable 

Most or almost all students are single or taxable. 

Proposition 9: (Intersection Right) 

Q A's are B's 
1'1 

Q A's are C's 
1'2 

Q A's are (B n C)'s,with Q :S Q . . 
I' I' Mm(~t1,~t2) 

Example 6 

Few salaried people are official 

Most salaried people are taxable 

At least most salaried people are taxable official. 

Proposition 10: (Mixed Union Left) 

Q A's are C's 
I' 

All B's are C's 

Q (AuC)'sareB'swithQ E [Q,Q ]. 
Y y I' M-1 
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Example 7 

Most young people are single 

All the catholic priests are single 

Most or almost all young people or catholic priests are single. 

Proposition 11: (Intersection I Product Syllogism) 

Q A's are B's 
~I 

Q (An B)'s are C's 
~2 

Q A's are (B n C)'s, with Q =I (Q ,Q ). 
~I ~ ~I ~2 

Example 8 

Most students are young 

Almost all young students are unmarried 

Most students are young and unmarried. 

Proposition 12: (Contraction) 

Q A's are B's 
~I 

Q (An B)'s are C's 
~2 

Q Ns are C's with Q = [I (Q ,Q ), Q ]. 
~ ~ ~I ~2 Max(M- I, ~2) 

Example 9 

Most students are young 

Almost all young students are unmarried 

Most or almost all students are young and unmarried 

Proposition 13: (Intersection/Quotient syllogism) 

Q A's are B's 
~I 

Q A's are C's 
~2 

Q (An B)'s are C's 
~3 

Q (An C)'s are B's, with Q E C (Q , I(Q , Q )). 
~ ~ ~2 ~I ~3 

Example 10 

Most students are young 

Most students have no salary 

Almost all young students have no salary 

Almost all no salaried students are young. 
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Proposition 14: (Weak Transitivity) 

All B 's are A's 

Q A's are B's 
Jll 

Q B's are C's 
112 

Q" A's are C's with Q" e [I (Q"1 ,Q112
), QM)· 

Example 11 

All salaried people are active 

Most active people have no salary 

Most salaried people are taxable 

Q active people are taxable with Q e [half, almost-all]. 
" " 

5.1 Syllogims with the Quantifier Almost-all 

We present three syllogisms with the quantifier "Almost-all". They result from the axioms of quantifi­

er "Almost-all" (Cf.Axiom 1, Axiom 2). These inferences can be viewed as counterparts 
4 
of inference rules 

of Adams [1], Pearl [29] and Bacchus et al. [5], where "Almost-all"is interpreted as proportion arbitrarily 

infinitesimal close to 1.0ur symbolic approach leads to the following results which are in accordance with 

the previous ones, since we obtain a proportion Q belonging to a subinterval of~ containing the value 
" "Almost all". It is clear that the meaning associated with the quantifier "Almost all" in our approach, as in 

the ones of Adams and Pearl, differs from the meaning that it receives in natural language. Indeed, a speak­

er does not refer to infinitesimal proportion close to 1, since linguistically speaking, "Almost all" is only 

included in "Most". As noted before, in our approach, "Most"and "Almost-all" define two different val­

ues of statistical proportions of OM ,"Most" being less than "Almost all", which is very close to "All", but 

not included in "Most". 

Corollary 15: (Contraction) 

Almost-all Ns are B's 

Almost-all (An B)'s are C's 

Almost-all A's are C's. 

Example 12 

Almost all students are young 

Almost all young students are single 

Almost all students are single. 

Proposition 16: (Cumulativity) 

Almost-all Ns are B 's 

Almost-all A's are C's. 

Qfl (An B)'s are C's, with Q e [Most, All]. 
" 'Pearl's approach is introduced for default reasoning, then his inferences are not exactly syllogisms, but they are rather non-monotonic inferences about partic­

ular individuals from defaults. 
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Example 13 

Almost all students are young 

Almost all students are single 

At least most young students are single. 

Proposition 17: (Union Left) 

Almost-all A's are C's 

Almost-all B's are C's. 

Q (Au B)'s are C's,with Q e [Most,Almost-all]. 
~ ~ 

Example 14 

Almost all students are single 

Almost all priests are single 

Most or almost all students or priests are single. 

6. Symbolic Representation of Subjective Probabilities 

Let us present the main ideas leading to this symbolic approach to subjective probability. Consider 

statements like "It is probable that the temperature is~ 30."or "It is very probable that Tweety flies". They 

have the following form "It is a probable that P" where P is a linguistic proposition, generally of the form 

"a is A", A a linguistic predicate, and a a scaling adverb. We can rewrite previous statement into the form: 

"Pis a probable"(i.e. "a is A" totally-true) is a probable. Then, it seems convenient to consider that "prob­

able" is representable by a multiset <p and hence that a stands for the degree to which "Pis probable". 

More formally,one is led to enrich our M-valued predicate logic by defining a pecular predicate denot­

ed here Cert, and by adjoining the following rule of formula formation: 

if 0 is a formula such that, for any interpretation Ql and any a in the domain n, Ql t= M0( a) or A = 1 0( a) 

then Cert ( 0 (a)) is aformula. 

In the following, we denote as C2 the formulae of~ which are either totally true-in-A or not-at-all true­

in-QlC2 ={ 0 E F IV a, Ql, t= M0(a) or Ql t= 
1
0(a)}. This new predicate takes into account the notion of sub­

jective probability of formulas of C2. 

Definition 9: The predicate Cert is formally introduced as follows: 

- If 0 e C2, then Cert(0) e ~. 

- Any interpretation Ql associates with the predicate Cert the multiset 1). 

- Hence, for any 0 C: Ql = Cert (0 (a))<=>< 0 (a)> e > <p <=> Cert (0 (a)) is T -true- in- Ql. 
2 a a 

Remark 3: Let UM be the set of symbolic degrees of subjective probability: UM = {ua, a E [1, M]}. The 

basic idea of the definition is to translate the symbolic degree of subjective probability of 0 (a) in terms of 

symbolic degree of truth of the formula Cert (0(a)). Then, we associate with each symbolic degree of truth 

ofthe formula Cert(0(a)) ,a symbolic degree of subjective probability (or certainty) ofthe formula 0 (a). 

Therefore, we can write that: 0 (a) is u -probable-in-A<=> A= Cert (0 (a))<=> Cert (0 (a)) is T -true-in-A. 
a a a 
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Remark 4: It is clear that the certainty degree of 0 (a) is not its truth value (which is true or false since 0 

(a) is boolean) but the certainty degree associated with the truth degree ofCert (0 (a)). 

Choice of subjective probability degrees linked to 0
7 

As we use 7 quantifiers, we introduce 7 symbolic degrees of subjective probability as follows: 

U
7 
= {Not-at-all-probable (or Impossible), Very-little- probable (or Almost-impossible), Little-probable, 

Moderately-probable, Very-probable, Almost-certain, Totally-probable (or Certain)}. 

This being so, we can give in the next Section a symbolic generalisation of direct inference that allows 

us to connect our symbolic representation of statistical probabilities with this symbolic represen-tation of 

subjective probabilities. 

7. Symbolic Direct Inference 

Another alternative interpretation of statistical probabilities (different from the one related to the pro­

portions of the sets of the domain) is related to the process of "random selection" which consists in select­

ing individuals from the domain according to their probabilities [4]. In this context, the quantified asser­

tion "a % of individuals of the domain verify a property" can be interpreted as "the probability that a ran­

domly selected domain individual satisfies the property is equal to a". This interpretation of quantified 

assertion can be seen as a way of justifying the deduction of uncertain conclusions about particular indi­

viduals (i.e., subjective probabilities) from statistical knowledge (i.e., statistical probabilities) via the 

direct inference ([31], [22], [30], [4]). Indeed,the principle of direct inference is based upon the idea that 

a particular individual in the domain is considered as a member randomly selected in a population, if no 

particular information distinguishes it from other members of this population. 

For example, if all we know about Tweety is that it is bird,then Tweety can be viewed as a randomly 

selected member of the population of birds since we do not have any other information that distinguishes 

it from other birds. Then, knowing that Tweety is a bird,the (subjective) probability that Tweety flies is 

equal to the (statistical) probability that a bird randomly selected from the set of birds flies, i.e. the pro­

portion of flying birds among the birds. 

7.1. Symbolic Formalisation of Direct Inference 

In the following, we propose a symbolic generalization of direct inference principle allowing us to infer 

a symbolic subjective probability degree from a symbolic statistical probability degree.Althought the two 

symbolic probability degrees are different, the generalization takes into account the fact that the two 

degrees are associated with the same truth degree of predicates Prop and Cert in a given interpretation. 

For example, if we know that "Most birds fly" and that all we know about Tweety is that it is a bird,then 

our direct inference mechanism has to lead to the conclusion that "it is very-probable that Tweety flies". 

More formally, in our model, considering an interpretation Ql, from "Ql f: 
5
Prop (Fly(z) I Bird(z))" and "Ql 

=Bird (Tweety)",we should deduce that "Ql f: 
5
Cert(Fly(Tweety))". 

Our main idea has been to extend previous definition of Bacchus's direct inference [4] using previous 

symbolic statistical probability theory (Section 3 and 4) and subjective probability theory (Section 5). So, 
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we use M-valued language extended with the two particular predicates Prop and Cert, denoting the two 

notions of probability. 

For a given M-valued interpretation Ql, we will suppose that the current knowledge base KB contains 

facts about particular individuals and quantified assertions. Then, KB can be formally represented in A as 

follows. 

Definition 10: For a given interpretation A, the available knowledge base will be the couple KB = 

(W, ~) where: 

- W is the conjunction of formulae representing the available knowledge about the particular indi­

viduals of the domain,and 

- ~is the set of formulas (Ql f: Prop ('1'10)) associated with the current quantified assertions (Q A's are 
~ ~ 

B's). 

Example 15: Let us consider the classical example: "Tweety is a bird"and "Most birds fly" .It can be for­

mally represented by KB = (W, ~)with: W =Bird (Tweety) and~= {Ql = 5 Prop (Fly(z) I Bird (z))}. 

Definition 11: From the previous set ~ characterizing quantified assertions and by using the syllogistic 

inferences (Section 5) one can deduce a set ~* of formulae characterizing new quantified assertions. In 

particular, whe have ~ c ~*. 

Example 16: Let us suppose that the available knowledge base contains: "Almost all students are young" 

and "Almost all students are single". Then~= {Ql f: 6Prop (Young(z) I Student(z)), Ql f: 6Prop (Single(z) I 
Student(z)}. Then, by using the cumulativity syllogism, we can say that {Ql f=lrop (Single(z) I Student(z) 

n Young(z)) with Q~ 2: QJ E ~*.That says "At least most young students are single". 

Definition 12: Given the available knowledge base KB = (W, ~), W (a) will be the conjunction of for­

mulas appearing in W mentionning a and 0 (a) a formula ofC
2

• Moreover, we denote as 0 (a I z), the for­

mula obtained when textually substituting each occurrence of a in the formula 0 (a) by the variable z. Thus, 

0 (a I z) E C1• 

In particular, W (a I z) is obtained by substituting each occurrence of a in W (a) by z. Intuitively, this 

substitution denotes a form related to the process of "random selection". The constant a is considered as a 

"random member"by replacing it in W (a) by the variable z. This leads to suppose that the individual 

denoted by a is randomly chosen among the individuals sharing all its properties, i.e. the individuals sat­

isfying W (a I z). 

Let us now present the basic notions leading to our basic definition of symbolic direct inference. Given 

a knowledge base KB,we suppose that a denotes an individual constant of the domain Q, and we sup­

pose that a appears in W. The main object of the direct inference can be presented as follows: given an 

individual constant a, and 0 (a) a formula of C
2

, we research its certainty degree u"-probable (or the true 

degree T of Cert (0 (a))) resulting from the available knowledge base KB = (W, R). This certainty degree 
a 

(or subjective probability degree) is defined in the following way: 
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Definition 13: (Direct Inference Principle) 

By using previous notations,a denotes an individual constant of the domain, z a variable, and KB = (W, 

R) the available knowledge base. Given a formula 0 (a) of C
2

, the degree u .. -probable of the subjective 

probability of 0 (a) results from the following direct inference principle. If there exists a syllogism such 

that (Q.li= .. Prop (0 (a I z)l W (a I z))) e 9\*, then 0 (a) will be said u .. -probable, i.e. Q.l = .. cert (0 (a)). 

Formally,it means that the truth degree ofCert (0 (a)), associated to the symbolic degree u .. ofthe sub­

jective probability of 0 (a), is the same truth degree as Prop (0 (a lz) I W (a I z)), associated to the sym­

bolic degree Q of the proportion of individuals satisfying 0 (a I z) among the ones satisfying W(a I z). So, 
" 

the symbolic meaning does not concern the equality (as, in numerical approaches of the two degrees (since 

they are symbolicly different) but on their association to the same truth degree of Prop (0 (a I z) I W 

(a I z)) and Cert (0 (a)). 

Example 17: Let us consider the previous example: "Tweety is a bird" and "Most birds fly".We have: KB 

= (W, 9\) with W =Bird (Tweety) and R = {Q.ll= 5Prop (Fly (z) I Bird (z))}. The symbolic degree of cer­

tainty of"Fly(Tweety)" is deduced as follows: W (a)= W (Tweety) =Bird (Tweety) (which is totally-true 

in-Q.l), W (a I z) = Bird (z), 0 (a) = Fly (Tweety), 0 (a I z) = Fly (z). Since Prop (Fly (Tweety I z) I Bird 

(Tweety I z)) is equal to Prop (Fly (z) I Bird (z)), we have (Q.£1=
5 

Prop (Fly (Tweety lz) I Bird (Tweety I z))) 

e 9\*. In other words, the Direct inference principle gives us: Q.ll= Cert (Fly (Tweety)). This means that 
" 

"it is very probable that Tweety flies". 

Example 18: Let us add to the base of example, "Tweety is a penguin", "All penguins are birds" and "Few 

penguins fly". Then, we have: W (Tweety) =Bird (Tweety) n Penguin (Tweety) and 9\ = {Q.£1=
5 
Prop (Bird 

(z) I Penguin (z)), Q.ll= lrop (Fly(z) I Bird(z)), Q.ll= 
3 

Prop (Fly(z) IPenguin(z))}. By using the syllogism of 

mixed cumulativity
5 

from:{Q.li=Prop (Bird(z) IPenguin(z)), Q.ll= 
3
Prop (Fly(z) I Penguin(z))}, we deduce 

that: Q.ll= 3 Prop (Fly(z) I Penguin(z) n Bird(z)). Applying direct inference leads to deduce the symbolic 

degree of certainty of "Fly (Tweety)" as follows: Since, we have: (Q.ll= 
3
Prop (Fly (Tweety I z) I Penguin 

(Tweety I z) n Bird (Tweety I z))) e 9\*, then we obtain: Q.£1=3 Cert (Fly (Tweety)), that is to say "it is lit­

tle proba-ble that Tweety flies". 

Example 19: Let us consider the following example proposed in [11]: "Most native speakers of German 

are not born in America", "All native speakers of Pennsylvanian Dutch are native speakers of German", 

"Most native speakers of Pennsylvanian Dutch are born in Pennsylvania", "All people which are born in 

Pennsylvania are born in America" and "Hermann is a native speaker of Pennsylvanian Dutch". The 

knowledge base is made ofW (Hermann) =P Dutch-speak (Hermann) and 9\ = {Q.ll= 
5 

Prop(-. America(z) 

I German-speak (z)), Q.li=Prop (German-speak(z) I P Dutch-speak (z)), Q.£1=5 Prop (Pennsylv(z) I P Dutch­

speak (z)), Q.li=Prop (America(z) I Pennsylv(z))}. Applying the syllogism of mixed transitivity, we have 

{Q.£1= 5 Prop (Pennsylv(z) I P Dutch-speak(z)), Q.li=Prop (America(z) I Pennsylv(z))}, R* containing (Q.ll= 

lrop (America (Hermann I z) I P Dutch-speak (Hermann I z)) with Q
11 

2:: Q) = (Q.ll= lrop (America(z) I P 

'that is {"All A's are B's", "Q. A's are C's"} =} "Q. (An B)'s are C's". 
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Dutch-speak(z))). Then, the direct inference leads to deduce Ql F= 
11
America (Hermann), with Q~' :::=: Q

5
• In 

other words, it is at least very probable that Hermann is born in America. We can note that, there is no syl­

logism allowing to deduce a syllogism from the quantified assertions Ql F 5 Prop c-. merica(z) I German­

speak (z)) and Ql f=Prop (German-speak(z) IP Dutch-speak (z)). 

Definition 14: Given the available knowledge base KB = (W, R) and a an individual constant, a reference 

class of a given KB for a formula 0 (a) (in which one wants to generate a certainty degree) is a subset of 

the domain Q to which belongs the individual a. More particularly, W (a I z) characterizes a reference 

class of individual a given KB. 

Remark 5: It is important to point out that this direct inference principle is not always applicable: It is the 

case when we do not have any meaningful information for the reference class W (a I z), i.e. we have 

Ql F= [l,MJProp (0 (a I z) I W (a I z)) (that is a case of total ignorance). Moreover, in some cases one can be 

confronted to the existence of conflictual reference classes. The next section is devoted to this conflictual 

situation. 

7.2 Choice of a Reference Class 

One is often confronted to the existence of conflictual reference classes. One can distinguish three con­

flict types: 

- Conflict between less and more specific classes, 

- Conflict between classes associated with less and more precise information, 

- Conflict between incomparable classes. 

To solve the first and the second conflict type, we are going to modify the basic definition of the diiect 

inference by a symbolic formalization of the specificity rule of Reichenbach [31] and the strength rule of 

Kyburg [22]. For the third type, we are going to propose a combination function of symbolic degrees asso­

ciated to incomparable reference classes. 

7.2.1. Formalization of the Specificity Rule 

The specificity rule of Reichenbach consists of choosing among reference classes, the smallest ( specif­

ic )class for which we have meaningful information. So, given a knowledge base translated in 

KB = (W, R). We propose a symbolic formalization of the specificity rule allowing us to infer the certain­

ty symbolic degree in 0 (a) from KB, by choosing information associated to the smallest reference class 

designed by W'(a I z), when we ignore the degree as-sociated to W(a I z). 

Definition 15: (Specificity Rule) Let us suppose that: KB = (W, 9\). The specificity rule allows us to infer 

"Ql F= "Cert (0 (a))" if the three following conditions are satisfied: 

1) We have (Ql F=[,,M1Prop (0 (a I z)l W(a I z))), 

2) 3 W'(a lz) such that: 9\* containing (Ql F= "Prop (W' (a I z) I W(a I z))), (Ql F=aProp (0 (a I z)l W'(a I 
z))), 

3) 3 W" (a I z) such that: 9\* containing (A f=Prop (W'(a I z) IW'' (a I z)))), Ql = llProp (0 (a I z)l W" (a I 
z))). 
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Intuitively, the three conditions above express respectively: 

1) We do not have any meaningful information for the reference class W (alz). Otherwise,the basic def­

inition of the direct inference is applicable. 

2) The existence of a reference class W' (alz) for which we possess a meaningful information. 

3) There is not a smaller reference class that W' (alz) for which we possess a meaningful infor-mation. 

Remark 6: Let us suppose that W(a) = W'(a) n W" (a). The specificity rule allows us to consider that the 

information W" (a) is no relevant for the derivation of the certainty degree in 0 (a). 

Example 20: Let us suppose that we have the fol-lowing knowledge base: 

- Most elephants are gray: Q( f: 
5 

Prop (Gray(z) I Elephant(z)), 

- Few royal elephants are gray: Q( f=lrop(Gray(z) I Elephant(z) n Royal(z)), 

- Clyde is an African royal elephant: Ql f: Elephant (Clyde) n Royal (Clyde) n African (Clyde). 

We have two reference classes having meaningful information, for Gray (Clyde): Elephant(z) and 

Elephant(z) n Royal(z). This last is the smallest class, because we have: (Ql f:Prop (Elephant (Clydelz) I 
Elephant (Clydelz) n Royal (Clydelz))) n 9\*. Applying the specificity rule, we obtain: Q( F= 

3
Cert (Gray 

(Clyde)), i.e., "it is little probable that Clyde is gray". 

7.2.2. Formalization of the Strength Rule 

The strength rule ofKyburg [22] is used in the cases where information associated with reference class­

es are intervals.It considers that a class of reference is better than another one, if associated information is 

more precise than one associated with the other. In our symbolic context, we put the following definition: 

Definition 16: (Strength Rule) Given a knowledge base KB = (W, R). Then, the strength rule, allows us 

to derive that: Ql F=aCert (0 (a)) with u E [uc ,uct], ifthe following conditions are satisfied: 

- 9\* containing (Ql Fa,Prop (0 (a I z) I W (a I z))) with Qa, E [Qa ,Qb]), 

- W'(a lz)is a reference class, 

- 9\* containing (Ql f: alrop (0 (a I z) / W '(a I z))) with Qa2 E [Qc ,Qct]), and [Qc ,Qct] [Qa ,Qb]). 

Remark 7: The priority between the two rules is given by the strength rule. Therefore, the specificity rule 

can be applied when the the strength rule condition is not verified. 

7.2.3 Incomparable Reference Classes 

The reference classes can be incomparable, i.e., neither the specificity rule nor the strength rule can be 

used. A solution can be proposed in this case like in [5]: the certainty degree results from a combination 

of certainty degrees associated with the incomparable reference classes. 

Definition 17: A combination function Comb is an application ofU
2
M into UM possessing the following 

properties: 

[Cb1] Va, ~ E [2 .. M], Comb (ua, u~) =Comb (u~, uj, 

[Cb2] Va, ~ E [2 .. M], Comb (ua, u~) = E (urnax(a,p)' umin(a.~)), 

[Cb3] Va, E [2 .. M], Comb (ua, uM) = ~ (umin(a.~), ~is an absorbent element for any a E [2 .. m]. 
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[Cb4] Va, E [1.. M -1], Comb (ua, uJ = u
1 

is an absorbent element for any a E [1.. m]. 

[CbS] Va, E [2 .. M -1], Comb (ua, un(a) = u4 Conflict related to the ambiguity 

[Cb6] Va, 13, 8 E [1.. M], Comb (Comb (ua, u~), U0= Comb (ua, Comb (u~, U0)), Associativity 

[Cb7] Va, 13, 8 E [2 .. M- 1], Comb (ua, u~), = U0 :::} Comb (ua, ui3+J E (u0, uo.J, Monotonicity. 

Choice of Comb: We can choose the function Comb as follows: Va, 13 E [2 .. M-1]: 

Comb (u , u.) = lu L J if a + 13 :::; M a ~ (a+~)/2 

u 
1
ifa+I3>M 

(a+~)/2 

where LrJ (resp.jrl) denotes the greatest integer lower than (resp. lowest integer greater than) or equal 

tor. 

It is clear that the following table corresponds with the function Comb. 

Comb ul u2 u3 u4 us u6 u7 

ul ul ul ul ul ul ul 

u2 ul u2 u2 u3 u3 u4 u7 

u3 ul u2 u3 u3 u4 us u7 

u4 ul u3 u3 u4 us us u7 

us ul u3 u4 us us u6 u7 

u6 ul u4 us us u6 u6 u7 

u7 u7 u7 u7 u7 u7 u7 

Definition 18: Given a knowledge base KB = KB = (W, 9\) for which we have: 

W(a) =A
1 

(a) n ... nAn (a), with n 2: 2; R* containing ((Qll= a1Prop (B (z) IA1 (z))), ... , (Qll= alrop (B 

(z) I An (z))) where tl ai E [l..n] , tl ai E [l..n] such that ai = 1 and ai = M). 

The classes referred by Ai (z) being incomparable, the certainty degree ua such that Qll= "Cert (B(a)) 

results from a combination, using the function Comb, of the certainty degrees um associated with these 

classes. 

Example 21: Given the following knowledge base (the Nixon Diamond): 

Almost all Quakers are pacifist 

Almost all republicans are not pacifist 

Nixon is a republican Quaker. 

Then, W = Q (Nixon) n R (Nixon), 

9t = {Qll= lrop (P(z)IQ(z)), A l=lrop (--.P(z)IR(z))}. 

From Qll=lrop (--.P(z)IR(z)) E R, the relative duality syllogism implies Qll=lrop (P(z)IR(z)) E 9\*. The 

two reference classes having an information to determine the certainty symbolic degree of P(Nixon) are 

classes Q(z) and R(z). This conflict between the two classes relates to the ambiguity (Property [Cb5]). By 

using the function Comb, we get Comb (u
6

, u2) = u4. Therefore, we obtain: "Qll= 4Cert (P(Nixon))", i.e., "it 

is moderately probable that Nixon is pacifist". Thus, the derived certainty symbolic degree of P(Nixon) 

.and one of its negation are the same, i.e. none of these two conclusions is more probable than the other. 
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That is a satisfactory result, since in terms of specificity, none should be preferred to the other. 

Example 22: Given the following knowledge base: 

S 1: Very few students are salaried 

S2: All students are adult 

S3: Most adults are salaried 

S4: Most people of the active population are salaried 

S5: Between half and almost all taxable people are salaried 

W(Paul) =Student (Paul) 11 Adult (Paul) 11 Active (Paul) 11 Taxable (Paul) 

We look for the certainty symbolic degree of Salar (Paul). We have: 

Student c Adult =::::>"Student" is more specific that "Adult". 

{Most} c [Half, Almost-all] =::::>"Active" is more stronger that "Taxable". 

The classes "Student" and "Actives" are incomparable, therefore, we use certainty degrees combination: 

Comb (Very-little-probable, Very-probable)= Little-probable, i.e., one obtains "It is little probable that 

Paul is salaried". 

Remark 8: The probabilistic non-monotonic reasoning does not suppress conclusions, as it is the case in 

non-monotonic approaches. It preserves the conclusions, but it decreases or increases its probability value. 

The certainty symbolic degree inferred by this principle can be revised, when new information is added. 

Indeed, the added information can imply a new reference class or a new combination. Therefore, the cer­

tainty symbolic degree can increase or decrease. 

8. Comparison with other Approaches 

We can justify the correctness of our approach to linguistic quantification and the soundness of our 

results. The basic notions defming (1) the representation of linguistic modifiers, and (2) the deductive 

process dealing with quantified assertions results from the papers of Bacchus [ 4] and Bacchus et al. [ 5]. 

There are three levels where we can com-pare our approach to the one proposed by Bacchus. The first level 

concerns the representation of statistical quantified assertions, the second level deals with syllogistic rea­

soning and the last level is the process of direct inference. 

8.1 Representation 

At the representational level, Bacchus extends first-order classical logic by introducing a new operator 

(denoted by "[]")in order to define numerical proportions. In our approach, unless to add a new operator, 

we have introduced in our M-valued symbolic logic a new predicate (that can be viewed as an element of 

a metalogic) and we have given the axioms governing it.This can be interpreted (see paragraphs 3,4 and 

5) as a symbolic generalization of classical absolute and conditional statistical probabilities (proportions). 

About the quantifiers, Bacchus' framework is defined upon statistical assertion& using numerical values 

but it is only used for the symbolic values "majority" (which is interpreted as a proportion > 0.5)and 

"minority". Bacchus call his quantifier expressing the majority "most". So, he only focuses on one lin­

guistic quantifier (and its dual one) defining typicality. In our work, the aim is different since we do not 
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want to represent the notion of majority but to capture the whole set of symbolic proportions. That's why 

we use several different quantifiers (seven in this paper) which describe a scale of quantifiers. Clearly, this 

scale defines a set of symbolic quantifiers which can be seen as a refinement of the symbolic quantifiers 

used by Bacchus. 

8.2 Syllogistic Reasoning 

If we focus now on the syllogistic reasoning, we can verify that our approach leads to find similar syl­

logisms as the ones that can be found with Bacchus' proposal. 

IfQ is associated with a numerical value (or a numerical interval [a, b]) then in Bacchus's approach,we 

can give the following syllogisms: 

- 1 - Mixed Transitivity 

QNs are B's 

1 B's are C's (1 is equivalent to 100% or "All") 

[Q, 1 ] A's are C's (i.e. Q' Ns are C's with Q' ~ Q). 

Our approach gives the same result (Cf. Section 5): 

Q~1 A's are B 's 

All B's are C's 

QllZ A's are C's with Q~2 ~ Q~1 • 

- 2 - Intersection/Product syllogism 

Q1 A's are B's 

Q2 (A 11 B)'s are C's 

Q1 *Q2 Ns are (B 11 C)'s (where *stands for the multiplication operator) 

Our approach gives a similar result (Cf.Section 5), since the operator I stands for an operator having in 

2M the properties of a multiplication operator [28]. 

Q A's are B's 
~I 

Q~2 (A 11 B)'s are C's 

Q~ A's are (B 11 C)'s,with Q~ = I (Q~1 , Q~2). 
It is easy to verify that propositions 16 to 19, and 21 to 23, of Section 6lead to similar results. 

It is clear that they correspond to the same syllogisms since, for each syllogism, the resulting assertion 

is the same and the quantifier is obtained is the same way in the numerical and in the symbolic setting (that 

is using the same combination of the operators). 

Moreover, the operators C (division), I (product), S (addition), D (difference) are the symbolic coun­

terparts ofthe four classical operators (see Annex A and paragraph 4). The operators defined for the sym­

bolic setting respect the properties of classical operator such as, depending on the considered operator, 

associativity, existence of a neutral ele-ment, commutativity ,monotony, ... 

The behavior of our syllogistic reasoning when dealing with precise values is then depending on the 
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symbolic operators used for the syllogism. The question is to verify that they are in accordance with the 

classical operators used in a numerical setting. 

The problem is that it is not possible to prove that the symbolic operators are in total accordance with 

numerical operators. Indeed, it does not exist an isomorphism between the numerical and the symbolic set­

tings (as shown, for example, by Kaufmann [14]). So, it is not possible to give an interface between numer­

ical and symbolic quantifiers allowing to compare the behaviors of the two different systems. 

Finally, let us say that, on one hand, Bacchus' proposal is adapted when the given data are expressed 

with precise values but it would not be suitable when the informations are symbolic. On the other hand, 

our work is useful when there do not exist precise values but when the information are only expressed in 

terms of symbolic values (which is suitable with the initial aim of our work). 

8.3 Comparison with Bacchus direct inference 

As noted before, Bacchus is interested in representing the quantifier "most" (denoting the majority). In 

our approach ,this quantifier can be represented either by the quantifier "most", either "almost-all", either 

"all" that corresponds to "at least most". Then, we obtain results like the ones found in Bacchus. In the set 

of examples used by Bacchus, we do not give here the simplest ones but we focus on the most important 

ones. 

First, let us take the well-known Nixon Diamond: "Most Quakers are pacifist", "Most republicans are 

not pacifist", "Nixon is a republican Quaker". Bacchus do not decide if Nixon is pacifist or not. In our 

framework,the same result is obtained (see Section 8.2.3, example 20 by using quantifiers Q5 instead of 

Q6 in order to use "Most" instead of "Almost-all") since we deduce both that it is moderately probable 

that Nixon is pacifist and it is moderately probable that Nixon is not pacifist. 

Another example is the following one: "Most native speakers of German are not born in America", "All 

native speakers of Pennsylvanian Dutch are native speakers of German", "Most native speakers of 

Pennsylvanian Dutch are born in Pennsylvania", "All people which are born in Pennsylvania are born in 

America" and "Hermann is a native speaker of Pennsylvanian Dutch". In his paper, Bacchus deduces that 

the probability that Hermann is born in America is > 0.5, that is to say it is probable that Hermann is 

American. In our framework, we find (see Example 18) that it is very probable that Hermann is born in 

America. The two results are in accordance. 

So ,the results found in our framework are in accordance with the ones found with Bacchus' direct infer­

ence. 

The notions of reference classes used in our paper are based on the same strategies used by Bacchus. 

Hence, we propose a definition of specificity rule and strength rule that is in accordance with the ones pro­

posed by Bacchus. Moreover, for dealing with incomparable classes, we have introduced a combination 

function (Section 6.2.2). 
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8.4 Comparison with Bacchus et al. s direct inference 

The comparison with the work proposed by Bac-chus et al. needs a preliminary clarification.We have 

to notice that the notion of direct inference proposed in their paper differs from the one we use (and from 

the one proposed by Bacchus in his previous work). 

Their aim is not the syllogistic reasoning but the default reasoning with defining an inference rule ver­

ifying postulates of rational inference relation. Their definition of direct inference is defined on the seman­

tic of random worlds. 

In this work, they introduce a new operator to deal with quantifiers of the form "approximately x%". 

This allows to represent the quantifier "Almost-all",expressing a default rule,by "approximately 1". Their 

approach implies choice strategies of reference classes and a combination function of information associ­

ated with incomparable refer-ence classes. 

Then, it is possible to compare their "numerical" results with the ones obtained with our approach. As 

for the previous section, we only give here the comparison for one example (the one they use to explain 

the combination function). For "The Nixon Diamond "problem, our approach leads to "it is moderately 

probable that Nixon is pacifist" (see Example 20). By putting, the quantifier associated with "Most 

Quakers are pacifists" and approximatively equal to 1 and the quantifier associated to "Most republicans 

are pacifists" approximatively equal to 0, they obtain the value 0.5 (when considering that the rate of 

exceptions is the same for each default). The deductions are in accordance for the two frameworks. 

So, as far as the comparison between the different frameworks is possible, we can say that the results 

we find are in accordance with the results found by Bacchus and Bacchus et al. 

9. Conclusion 

In this paper we have firstly presented a symbolic approach to quantifiers used in the natural language 

to express a qualitative evaluation of proportions. This approach allows us to reason qualitatively on quan­

tified assertions,since we provide inference rules based upon statements involving linguistic quantifiers. 

Moreover, in order to obtain belief symbolic degrees attached to properties about particular individuals, 

and this, by using knowledge based upon quantified assertions and certain facts, we have also proposed a 

symbolic model based upon a direct inference principle and a choice of the appropriated reference class. 

It appears that the main contribution of our approach to the management of incomplete information, 

expressed through quantified assertions, results from the fact that we have clearly distinguished, ( 1) rea­

soning with a quantifier, which concerns the particular use of a statis-tical quantifier Qa applied to two sub­

sets A and B of discourse universe Q satisfying "Qa A's are B's", from (2)reasoning with particular indiv­

duals. Since, in our approach, reasoning on particular individuals constitutes a non monotonic rea-soning 

process, it will be interesting to verify that the properties associated with our process fullfil the basical pos­

tulates of a non monotonic relation, like the ones defining System P [23]. This point is actually on study. 
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Annex: Tables of operators C, I,S and D 

Remark 9: In the following tables,Q.,b stands for interval [Q.,Qb] 

Table 1: Operator C 

c Ql Q2 Q3 Q. Q, Q6 Q7 
Ql Ql,7 0 0 0 0 0 0 

Q2 {QJ Q2,7 0 0 0 0 0 

Q3 {QJ Q2,5 Q6,7 0 0 0 0 

Q. {QJ Q2,4 {Q,} Q6,7 0 0 0 

Q, {QJ Q2,3 {Q.} {Q,} Q6,7 0 0 

Q6 {QJ {Q2} {Q3} {Q.} {Q,} Q6,7 0 

Q7 {QJ {QJ {Q,} {Q.} {Q5} {Q6} {Q7} 

Table 2: Operator I 

I Ql Q2 Q3 Q. Q, Q6 Q7 
Ql Ql Ql Ql Ql Ql Ql Ql 
Q2 Ql Q2 Q2 Q2 Q2 Q2 Q2 
Q3 Ql Q2 Q2 Q2 Q2 Q3 Q3 
Q. Ql Q2 Q2 Q2 Q3 Q. Q. 
Q, Ql Q2 Q2 Q3 Q. Q, Q, 
Q6 Ql Q2 Q3 Q. Q5 Q6 Q7 
Q7 Ql Q2 Q3 Q. Q, Q6 Q7 
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