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ABSTRACT 

Overhead is an incurred cost which is matched against cost objects via an intervening 
base of allocation. The problem of overhead allocation is to come up with a cost allo­
cation procedure which is objective, applies. uniformly to all cost centers, is logically 
defensible, pays attention to the fact that no manager likes costs that are not under 
his control to be allocated to him, and makes use of the available data. This problem 
is solved in this paper via goal programming models. The procedures involved are illus­
trated through a detailed numerical example. 
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Introduction 

This section sets up the perspective in which the problem with which we are concerned 
is stated. To start with, a unit of the organization to which costs are assigned and within 
which costs are aggregated for purposes of control is called a cost center. Costs incurred 
entirely within a cost center are called direct costs (of that center). If the direct costs 
of a center are incurred for the benefit of that center alone, the center is called a prod­
uction center, or a production department. A cost center which is not a production 
department is called a service department. 

Costs assigned to a center which are not part of its direct costs are the center's 
indirect costs. Indirect costs of a center are also known as the center's overhead. Costs 
incurred that are not direct costs of any center will be referred to as the organization's 
unstructured overhead. Examples of unstructured overhead are property tax and de­
preciation of buildings. 

A center's overhead which originates from other centers will be referred to as the 
center's structured overhead. A center's unstructured overhead, on the other hand, is 
that which originates from the unstructured overhead of the organization. The semi­
full costs of a center are defined as the sum of its direct costs and its unstructured 
overhead, and a center's full costs are defined as the sum of its semi-full costs and its 
structured overhead. 

An overhead is allocated through an intervening base of allocation. There are different 
bases for allocating overhead; one traditional method of allocation is to use a different 
base for each type of overhead. Bases of allocating different types of overhead which 
appear to be most typical in practice are square footage for rent, depreciation of 
buildings, property tax, heating and cooling, and fire insurance; number of employees 
for supervision, general administration, cafeteria, payroll, personnel, transportation, re­
creation, and computer services; and prime cost for research and development, and 
advertising (general) [3]. 

The problem with this method of allocation is that there are suitable alternatives 
for each base, and no general rule as to which base should be used in a particular case. 
Each organization wrestles constantly with these bases in an effort to achieve equity 
[3, p. 801]. 

Another traditional method of allocating overhead is to use one base for all types of 
overhead. Bases for this method which appears to be most typical in practice are units 
of production, materials cost, direct labor cost, and machine hours [9, pp. 186-243]. 
With this method of allocation, however, the question is which base is the correct one? 
It has been noted [3, p. 806] that there is no precise answer to this question. On the 
one hand it can be said that no base is the correct base, since the choice of any base is 
either arbitrary or a matter of managerial discretion. On the other hand, the choice of 
just any base does not appear to be satisfactory, because some appear to be better than 
others with respect to certain types of overhead, and different bases are likely to pro­
duce allocations that are materially different. 

In regard to the problem of cost allocation, Professor Horngren [5, pp. 395-426] 
has noted that: 'cost allocation is an inescapable problem in nearly every organization, 
... the choice of an allocation base is often necessary because there is no obvious or 
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convenient direct link between a cost and the cost obj((ct, ... questions of allocation 
are inevitably tough, so the answers often are not clearly right or wrong, ... the entire 
methodology of reallocation (of indirect costs) is :plagued by the frequent reliance on 
sotp.e arbitrary rules that are designed to charge (cost objects) in some "equitable" 
manner, . . . the argument anyway, and that managers generally do not get too con­
cerned about such allocations as long as all departments are subject to uniform cost 
reallocation procedure, ... the argument against the reallocation of such costs rests 
on the idea that no cost should be reallocated to a manager unless he has some direct 
influence over their amount, and to the extent that an allocation base is no more logically 
or empirically defensible than some other base, either do not allocate or allocate via a 
predetermined agreement. 

The problem situation with which this paper is concerned can now be stated: An 
organization which decided on full costing of its cost centers via one base for the alloca­
tion of all types of overhead, discovered that there are several suitable alternative bases, 
no one of them is more logically or empirically defensible than the others, and each one 
of them is likely to produce a cost allocation that is materially different from the others. 
The problem facing this organization is to come up with a cost allocation procedure which 
is objective, applies uniformly to all cost centers, is logically defensible, pays attention 
to the fact that no manager likes costs that are not under his control to be allocated to 
his department, and make use of the available bases. The purpose of this paper is to 
construct such a procedure through goal programming models. 

Formulation of the Model 

The idea of goal programming, which was introduced by A. S. Charnes and W. W. Cooper, 
states that, whether goals are attainable or not, an objective may be stated in which opti­
mization gives a result which comes 'as close as possible' to the indicated goals [4, 
p. 215]. 

In the context of our problem there are two sets of goals that are clearly in conflict 
with each other. The first set of goals pertains to the organization: its decision on full 
costing of its departments. The second set of goals pertains to the departments of the 
organization: cost allocation is a necessary evil, thus the smaller the amount allocated 
to a department the better it is. 

Full costing of the departments will be achieved through two successive stages. The 
first stage allocates the unstructured overhead among all of the departments. This is the 
stage of semi-full costing. The second stage allocates the structural overhead, and is the 
stage of full costing. 

Notations and Symbols 

The importance of the choice of symbols (in mathematics) was recognized long ago by 
the German universal genius G. Leibniz. Here we list the symbols and describe the 
notations that are used in what follows. The principle of mnemonics is used as far as 
the choice of the majority of symbols is concerned. The notations for row-vectors, 
column-vectors, matrices, and cross-sections of matrices are generalized adaptations of 
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those used in the PLl computer programming language and E. Bodewig's 'Matrix Cal­
culus' [2]. Let 

K = (1, 2, ... ,k) , index set of bases of allocation, 

N = (1, 2, ... ,n) , index set of production departments, 

M = (1, 2, ... ,m) , index set of service departments, 

aij = Base i data with respect to production department j, 

bij Base i data with respect to service department j, 

dpj = Direct cost of production department j, 

dsj Direct cost of service department j, 

u 

upij 

usij 

SPijt 

sfpij 

sfsij 
fp .. 

lJ 
fs .. 

lJ 

= Unstructured overhead of the organization, 

= Unstructured overhead allocated by base ito production department j, 

= Unstructured overhead allocated by base ito service department j, 
Structured overhead originating from service department i to 
production department j throught base t, 

= Structured overhead originating from service department i to 
service department j through base t, 

Semi-full cost through base ito production department j, 

Semi-full cost through base ito service department j, 

Full cost through base ito production department j, 

Full cost through base ito service department j, 

The following symbols stand for decision variables: 

fp· 
J 

fs. 
J 

Unstructured overhead to be allocated to production department j, 

Unstructured overhead to be allocated to service department j, 

Semi-full cost of production department j, 

Semi-full cost of service department j, 

Structured overhead to be allocated from service department i to 
production department j, 

Structured overhead to be allocated from service department i to 
service department j, 

Full cost of production department j, 

Full cost of service department j. 
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The following notations for row-vectors, matrices, and cross-sections of matrices are used 
in what follows: 

X,X** 

xi* 
X*j 

xi. 
X.j 

x.-. 
x.* 
y* 
y 

_ The matrix whose element in the i-th row and j-th column is Xij, 

= The i-th row of the matrix X, 

= The j-th column of the matrix X, 

= The sum of the elements of the i-th row of X, 

= The sum of the elements of the j-th columns of X , 

= The column vector whose elements are the sums of the rows of X , 

The row vector whose elements are the sums of columns of X, 

The vector whose components are y1 , y2 , ••• , 

= The sum of the elements of Y *" 

Definitional and Structural Equations 
It is clear that any allocation must satisfy the following definitional and structural equa­
tions. By definition, we have, for any department, that its semi-full cost equals the sum 
of its direct cost and the unstructured overhead allocated to it; and that its full cost is 
equal to the sum of its semi-full cost and costs allocated to it from service departments. 
Thus, 

SFP* DP* +UP*, 

= os* + us*, 
FP* SFP* + SP.*, 

FS* SFS* + SS.*. 
There are two structural relationships: The unstructured overhead of the organization is 
equal to the sum of the unstructured overhead allocated to the production departments 
and the unstructured overhead allocated to the service departments; and the full cost of a 
service department is equal to the sum of the structured overhead originating from it to 
the production departments and the structured overhead originating from it to the other 
service departments. Thus, 

u = UP. +US., 

SFS* + SS.* = SP *· + SS* .. 
Finally, since the direct cost of a service department is incurred ultimately for the benefit 
of the other departments, we, then, must have that, 

ssii = 0 , for all i in M . 

Semi~full Costing Under a Base 
The unstructured overhead, u, is allocated by base i to the production and service depart­
ments according to the preration formulas, 

UPi* u. Bi*/(Ai. + Bi.) , for all i inK, 

USi* = u. Ai*/(Ai. + BiJ , for alliin K. 
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The semi-full cost allocated by base i to the production and service departments, then, is, 
SFPi* = DP * + UPi* , 

SFSi* = DS* + USi* . 

Full Costing Under a Base 
Here again, the structured overhead originating from service department ito the produc­
tion and service departments is allocated through base t according to the preration formu­
las, 

SPi*t fsti . Hi*t , for all i in M , and all t in K, 

SSi*t = fsti · Gi*t , for all i in M , and all t in K ; 

where, 
Hi*t = Bt*/(At. + Bt. - ati) ' 

Gi*t = At*/(At. + Bt. - ati) , 

giit = 0 ' 
are the preration vectors for the production and service departments for a given service 
department i and a given base t. The above equations in conjunction with the definitional 
equations yield, 

FPt* = SFPt* + FSt* . H**t , 

FSt* = SFSt* + FSt* G **t , for all t in K . 
From the above two equations the full costs of the production and service departments 
according to base t are, 

FSt* = SFSt*. (I- G**t)"1 
, 

FPt* = SFPt* + FSt* . H**t , for all tin K. 
Finally, the structured overhead allocations for the production and service departments 
according to base t can be written as, 

SP **t Diag (FSt*) H**t 

SS**t = Diag (FSt*) . G**t , 
where, 

Diag (Y *) = The diagonal matrix whose diagonal elements are the components of Y * 

Goal Programming Semi-full Costing 
First, we develop the goals of the departments. Let, 

UP* = minimum (UPi*) , 

Similarly, 

iEK 

= The least unstructured overhead allocated by the bases to the production 
departments. 

US* = minimum (USi*) 
iEK 
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The goals of the departments, least possible unstructured overhead, can be stated as, 
UP* ..;;UP* , and US* ..;;us* , 

where order relations on aggregates (matrices and vectors) are element-wise. 
That part of the organization goal that requires semi-full costing of its departments is 

the fulfilling of the structural relationship, 
u =UP +US . . . 

It is clear, however, that the goals of the departments and that part of the organization 
goal are in conflict, and they cannot be attained simultaneously unless it is true that, 

u =UP +US · -. -·' 

in which case the unstructured overhead allocation that comes 'as close as possible' to the 
departments' goals is, 

UP: = .11P * , and us: = US* . 
The other possibility, namely, 

u>UP. +US., 
means that the system, 

UP* = UP* + X* , 

us* = us* + Y * , 

u =UP. +US., 

(UP* , US* , X* , Y *) ;;;;.: 0 , 

has no solution. In which case the basic idea of goal programming comes to play: 'create 
feasibility as necessary: 

One interpretation of the above dictum with respect to the above system is to allow 
the 'ought to' be non-negative vectors X* , and Y * to be unrestricted in sign but in such 
a manner that a measure of their deviation from non-negativity be as small as possible. In 
which case, however, there are several ways by which such deviation can be measured. 
Two such measures are the so-called weighted city block metric, and the weighted Eucli­
dean metric. At this point we note that most goal programming applications assume a 
weighted-city block metric for their objective functions [5, 6, 7, 10]. 

On the one hand, a goal programming model under a weighted city-block metric can 
be defined as [ 10] : 
minimize W'"* D+* + W~ D~ , 
subject to, 

A** X* + D~ - D~ = G* , B**X*;;;o:B* , 
(X* , D~ , D~) ;;;o:o. 

Where ~and W~ are row vectors of goal weights, D~ is a column vector of underachieve­
ment of goal levels, and D~ is a column vector of overachievement of goals. A** is a 
matrix of coefficients, X* is a column vector of decision variables, and G* is a column 
vector of desired goal levels. The constraints defined by B** X*;;;;.: B* are any additional 
constraints that are independent of goals. On the other hand, however, a goal program­
ming model under a weighted Euclidean metric can be defined as 
minimize D* Diag(W *) D~ , 
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subject to, 
A**X* + D* = G* , B**X*~B* , X*~O. 

where Diag (W *) is a diagonal matrix whose diagonal elements are the components of the 
vector W *' D* is a row vector of goals' deviations, and Diis the transpose of D*. 

Now a gE)al programming model for s~mi-full costing under a weighted city-block metric 
is 

minimize ud = .L: (1/wpJ·)(xj + xJ') + .L: (l/ws]·)(y+1· + YJ'), 
JEN · JEM · 

subject to, 

UP. + US. = u, , 
+ -

UP* + X* - X* = UP* , 
+ -

us* + Y * - Y * = us*, 
( + - + 
UP* ,US* ,X* ,X* ,Y* 

It is a simple linear programming model in which WPj is the priority weight given to the 
goal of production department j, and wsj is the prionty weight given to the goal of ser­
vice department j. The simple constraints of this model and the fact that u >UP.+ US. , 
indicate the following 'black or white' characteristic of the model, namely, a goal is either 
achieved or is underachieved. Furthermore, the achievement or the extent of under­
achievement of a goal depends on the relative value of its preemptive priority weight 
(1/wpj), or (1/wsj)· For example, the goal which is underachieved most is the one with 
the smallest preemptive priority weight, and the goal which is considered first for achieve­
ment is the one with the largest preemptive priority weight. 

A goal programming model for semi-full costing under a weighted Euclidean metric, on 
the other hand, is 

minimize ud = j ~ ( 1 /wpj) ( UPj - ~j)2 + j ~ ( 1 /wsj) ( usj - ~/ , 

subject to, 
UP. + US. = u , 

(UP* , US*)~ 0 . 
The solution of this model is, 

UP:= UP*+ (eu/w)WP* , 

us: = ~* + (eu/w) ws* ' 
where, 

eu = u - (UP. + US.) , 

w = WP. + WS .. 
We note that all the goals under this model are underachieved and that the extent of this 
underachievement for a goal is inversely proportional to its preemptive priority weight. 
The semi-full costing of the departments under this model is 

SFP! = DP* + UP! , 

SFs: = DS* + us: . 
The above solution of semi-full costing is not completely determined, and in fact it still 
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has (m + n) degrees of freedom, namely, the weights WP * , and WS* . However, it is pre­
cisely this freedom in the solution that enables management of the organization to fulfill 
the rest of its goal, namely, equitable and guided costing of its departments! Values of 
these weights are completely in the hands of management. This managerial discretion, 
however, should be guided by considerations of objectivity and equity. 

Goal Programming Full Costing 
As in the above section, we start by specifying the goals of the departments. Let, 

SP ** = minimum (SP **t) , 
tEK 

= The least structured overhead allocated by the bases to the production 
departments. 

Similarly, 

SS** = minimum (SS**t) 
tEK 

The goals of the departments, least possible overhead, can now be stated as, 

SP ** ~ SP ** , and SS** ~ SS** . 
That part of the organization goal that requires full costing of its departments is simply 

the fulfilling of the structural relationship, 

sFs: + ss.* = sP *· + ss*. , 
where SFs: is the semi-full costs of the service departments obtained from the goal pro­
gramming model of the above section. 

Similar to the above treatment of semi-full costing, a goal programming model under 
a weighted city-block metric is: 

minimize sd = igM jgN (1/WPij)(xij + xi}) + igM j~M (1/wsij) (yij + Yij) , 
subject to, 

+ 
SP ** + X** - X";.* = SP ** , 

ss** + Y!* - y-;,* = ss** , 

SFS! + SS.* = SP *· + SS*. , 

(SP ** , ss** , x!* , x;* , Y!* , ~*) ;;;.:o . 
The goal programming model under the weighted Euclidean metric is, 

minimize sd = i~M jlN (1/wpij) (~il + iJM jlM (1/wsij) (ssij - ~l , 
subject to, 

SFS! + SS.* = SP *· + SS*. , 

(SP ** , ss**);;;.: o . 
The solution of the weighted Euclidean metric model is, 

SP!* = S.f** - Diag (C*) WP ** , 

ss** = ss** + ws** .Diag(C*) - Diag(C*) . ws** , 
where, * 

C* = (WS** + WS~* - Diag(WS*. + WS.* + WP *·) )'~ (SFS* + SS.* - SS*- SP *) 
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The full costing under the weighted Euclidean metric model is, 
* * * FP* = SFP* + SP. * 
* * * FS* = SFS* + SS.* 

Management's Choice of Priority Weights 

It was suggested above that management should fulfill its directing and motivating roles 
through the judicious choice of the weights WP * , WS* , WP ** , and WS**. Thus, in its 
choice of these weights, management should be guided by considerations of equity and 
objectivity. 

Considerations of equity demand that equals be treated as equals, and unequals be 
treated as unequals. Based on this principle, then, it is reasonable to assume that if the 
available data corroborate one goal more than another one, the priority weight of the 
more corroborated goal be larger than that of the less corroborated one. 

The goals involved and their available data are: 

Goals 

UP*~UP* 

us* ~us* 

SP ** ~ SP ** 

ss** :<ss** 

Available Data 

UP *t for all t in K 

US*t for all t in K 

SP **t for all tin K 

SS**t for all tin K 

Corroboration accorded by the available data to the involved goals can be measured in 
terms of the deviations of the goals from the data. There are, however, many ways of 
measuring such deviations, and the simplest such measure, the averaged absolute devia­
tions, can be used to make the following simple assignment for the weights: 

WP* = (1/k) t:KI UP*t- UP*tl ' 

=UP*- UP* , 
where, 

UP* = (1/k) t~K UP *t 

Similarly, 

ws* = us* - us* , 

WP ** = SP ** - SP ** , 

ws •• = ss •• - ss**· 
We note that this particular assignment of weights indicates that a goal will be satisfied 
only if there are no differences among the allocations of the bases with respect to that 
goal. The above assignment of weights is used in the illustrative numerical example of 
the next section. 
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lliustrative Numerical Example 

To illustrate the above procedures, a hypothetical organization is assumed. This organi­
zation is made up of three production departments and two service ones. There are four 
bases of allocations that are available to the organization. 

This section contains the given data and the overall picture of the overhead allocations 
made by each of the four available bases and the Euclidean goal programming models 
The numerical details of these allocations are presented in the Appendix. 

The unstructured overhead of the organization, u, is £250,000. The direct costs of the 
three production and two service departments, DP * , and DS* , and the four bases' data 
with respect to the production and service departments, B, and A, arranged in the format 
of Fig. I, are shown in Table I. 

Labels 

Direct costs 
Bases K 

I Labels 
1 

Direct costs 65,000 
I 3,500 

Bases 
2 2,200 
3 350 
4 500 

Fig. 1.: Format of given data 

Departments 
Production Service 

N M 

DP* DS* 
B 

TABLE 1 
The given data. 

A 

Departments 

sums 

DP. + DS. 

B*. +A*. 

Production Service 
2 3 1 2 

40,00() 45,000 30,000 10,000 
3,000 5,300 2,500 4,000 

970 1,500 650 1,000 
700 1,000 !50 75 
800 1,500 670 470 

sums 

190,000 
18,300 
6,320 
2,275 
3,920 

The overall picture of overhead allocation produced by each one of the four bases of 
allocation and a Euclidean goal programming model, arranged in the format of Fig. 2, is 
obtained from Tables 7, IO, 9, I2, and 15 of the Appendix, and are shown in Tables 2, 
3, 4, 5, and 6. 
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Fig. 2: Format of overhead allocation of base t 

Departments 
Labels Production Service sums 

N M 

Direct cost DP* DS* DP. +DS. 
Unstructured overhead UP*t US*t UP.t + US.t 
Semi-full cost SF~t SFS*t SFP.t + SFS.t 
Structured overhead SP**t ss**t sP*.t + ss*.t 
Full cost FP*t FS*t FP.t + FS.t 

TABLE 2 
Overhead allocations of base 1. 

Departments 
labels Production Service sums 

1 2 3 1 2 

Direct cost 65,000 40,000 45,000 30,000 10,000 190,000 
Unstructured ovrhd 47,814 40,984 72,404 34,153 54,645 250,000 

Semi-full cost 112,814 80,984 117,404 64,153 64,645 440,000 I 
I 

Structured 1 17,363 14,995 26,833 00.000 19,730 78,921 
overhead 2 20,672 17,719 31,219 14,766 00.000 84,376 

Full cost 150,848 113,698 175,456 78,921 84,375 603,298 
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TABU:· 3 
Overhead allocations of base 2. 

I 
Departmellts ! 

I 
I Labels Production Service sums f 

I 1 2 3 1 2 

! 
Direct cost 65,000 40,000 45,000 30,000 10,000 190,000 

I Unstructured ovrhd 87,026 38,370 59,335 25,712 39,557 250,000 

Semi-full cost 152,026 78,370 104,335 55,712 49,557 440,000 
i Structured 1 24,487 10,792 16,725 00.000 11,108 63,112 
! overhead 2 25,115 11,041 17,108 7.401 00.000 60,665 1-

i Full cost 201,629 100,203 138,167 63,112 60,665 563,776 
i 

TABL£4 
Overhead allocations of base 3. 

Departments 
Labels Production Service sums 

1 2 3 1 2 

Direct cost 65,000 40,000 45,000 30,000 10,000 190,000 
Unstructured ovrhd 38,462 76,923 109,890 16,483 8,242 250,000 

Semi-full cost 103,462 116,923 154,890 46,483 18,242 440,000 
Structured 1 7,893 15,739 22,532 00.000 1,674 47,838 
overhead 2 3,167 6,334 9,062 1,354 00.000 19 917 

Full cost 114,522 138,996 186,484 47,839 19,917 507,758 
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TABLE 5 
Overhead allocations of base 4. 

Departments 
Labels Production Service Sli/IIS 

1 2 3 1 2 

Direct cost 65,000 40,000 45,000 30,000 10,000 190,000 
Unstructured ovrhd 31,888 51,020 95,663 42,730 28,699 250,000 

Semi-full cost 96,888 91,020 140,663 72,730 38,699 440,000 
Structured 1 12,689 20,270 38,067 00.000 II ,371 82,397 
overhead 2 7,210 II ,567 21,631 9,664 00.000 50,072 

Full cost 116,787 122,856 200,362 82,397 50,072 572,474 

TABLE6 
Overhead allocations of a Euclidean goal programming model. 

Departments 
Labels Production Service sums 

1 2 3 1 2 

Direct cost 65,000 40,000 45,000 30,000 10,000 190,000 
Unstructured ovrhd 51,297 51,824 84,323 29,770 32,786 250,000 

Semi-full cost 116,297 91,824 129,323 59,770 42,786 440,000 
Structured 1 15,964 15,664 26,469 00.000 2,449 60,549 
overhead 2 13,636 11,467 19,357 775 00.000 45,235 

Full cost 145,897 118,955 175,149 60,545 45,235 545,781 
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Regarding the overhead allocation tables above we note that the row of semi-full costs 
in Table 6 is equal to the simple average of the semi-full cost rows in Tables 2, 3, 5, and 
4. This result could have been predicted in advance given the simplicity of the solution of 
the Euclidean goal programming model for semi-full costing and the special nature of the 
preemptive priority weights used. The structured overhead rows in Table 6, however,are 
not equal to the simple average of the corresponding rows in Tables 2, 3, 4, and 5. The 
deviation of the structured overhead produced by the Euclidean goal programming model 
from the bases' averages is especially pronounced in the interaction among service depart­
ments. For example, 775 < < (14,766 + 7,401 + 1,354 + 9,664)/4. 

Summary and Conclusion 

Overhead is an incurred cost which is matched against cost objects via an intervening base 
(of cost reallocation). Usually, there are several suitable alternative bases, no one of them 
is more logically or empirically defensible than the others, and each one of them is likely 
to produce cost allocation that is materially different from the others. The problem of 
overhead allocation is to come up with a cost allocation procedure which is objective, 
applies uniformly to all cost centers, is logically defensible, pays attention to the fact 
that no manager likes costs that are not under his control to be allocated to hlm, and 
make use of the available data. This problem is solved in this paper via goal programming 
models. The procedures involved are illustrated through a numerical example whose nu­
merical details are presented in the Appendix. 

The goal programming setting is the most natural one for the problem of overhead 
allocation. The solution obtained is flexible, it does not abrogate the managerial pre­
rogative of exercising discretion, and it accentuates the directing and motivating roles 
of management [ 1] through the judicious choice of the preemptive priority weights of 
goal programming models. 

APPENDIX 

This appendix contains most of the intermediate numerical results that are required for 
the production of Tables 2, 3, 4, 5, and 6 of the illustrative numerical example. The 
notations and symbols used here are the ones introduced in the body of the paper. The 
formulas required for the calculations are reproduced here for the convenience of the 
reader. 

Semi-full Costing Under the Bases 
The unstructured overhead, u = S250,000, allocated to the production departments 
UP** , and the service department US** through the bases, arranged in the format of 
Fig. 3, is shown in Table 7, where, 

UPt* = u. Bt*/(~. + B1.) , for all tin K , 

,ust* = u. ~/(~. + Bt) , for all tin K , 
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Labels 

1 
2 
3 
4 

Fig. 3: Format of unstructured overhead 

labels N M sums 

K 

1 

47,814 
87,026 
38,462 
31,888 

UP** us** UP*·+ us*· 

TABLE 7 
Unstructured overhead allocations. 

2 3 1 2 

40,984 72,404 34,153 54,645 
38,370 59,335 25,712 39,557 
76,923 109,890 16,483 8,242 
51,020 95,663 42,730 28,699 

sums 

250,000 
250,000 
250,000 
250,000 

The semi-full costs are now easily obtained by adding the row of direct costs in Table l 
to each row in Table 7. 

Full Costing Under the Bases 
The full costs of the service and production departments according to base t are, 

FSt* \FSl* . (I- G**tr
1 

, 

FPt* Sl l't* + FSt*. H**t , for all tin K 
where, 

Hi*t = Bt*/(At. + Bt. - ati) , 

Gi*t At* /(At. + Bt. - ati) 'giit = O · 

The preration distribution matrices H**t and G**t, t = l, 2, 3, 4, arranged in the format 
of Fig. 4, are presented in Table 8. 

Fig. 4: Format of proration matrices 

labels N M 

I M H**l G**l 
2 !\1 H**2 G.,*2 
3 !\1 11**3 G ~*3 
4 ~1 H**4 G**4 

I 
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Labels 1 

I 
I 0.220 
2 0.245 

2 
1 0.388 
2 0.414 

3 
1 0.165 
2 0.159 

4 
I 0.154 
2 0.144 

TABLE8 
Proration matrices. 

2 3 

0.190 0.340 
0.210 0.370 

0.171 0.256 
0.182 0.282 

0.329 0.471 
0.318 0.455 

0.246 0.462 
0.231 0.432 

1 2 

0.000 0.250 
0.175 0.000 

0.000 0.176 
0.122 0.000 

0.000 0.035 
0.068 0.000 

0.000 0.138 
0.193 0.000 

The full costs allocated to the production and service departments through the bases, 
FP **and FS**' arranged in the format of Fig. 5, are shown in Table 9. 

Fig. 5 : Bases' full costs allocations, format. 

lilbels N M sums 

K FP** FS** FP*. + FS*. 

TABL£9 
Bases' full costs allocations. 

Labels 1 2 3 1 2 sums 

I 150,848 113,698 175,456 78,921 84,375 603,298 
2 201,629 100,203 138,167 63,112 60,665 563,776 
3 114,522 138,996 186,484 47,839 19,917 507,758 
4 116,787 122,856 200,362 82,397 50,072 572,474 

The structured overhead allocated to the production and service departments through 
base t is, 

SP **t Diag (FSt *) . H**t , for all t inK , 

SS**t Diag (FSt•) . G **t , for all t in K . 

These structured overhead allocation matrices SP **t and SS**t for t = 1, 2, 3, 4, arranged 
in the format of Fig. 6, are presented in Table l 0. 
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Fig. 6: Structured overhead allocation matrices, format. 

labels N M sums 

1 M SP**1 ss**1 sP*.l + ss*.l 
2 M SP**2 ss**2 sP *·l + ss*.2 
3 M SP**3 ss**3 sP *·3 + ss*.3 
4 M SP**4 ss**4 sP *·4 + ss*.4 

TABLE 10 
Structured overhead allocation matrices. 

Labels 1 2 3 1 2 

I 
I 17,363 14,995 26,833 0.000 19,730 
2 20,672 17,719 31,219 14,766 0.000 

2 
1 24,487 10,792 16,725 0.000 11,108 
2 25,115 11,041 17,108 7,401 0.000 

3 
1 7,893 15,739 22,532 0.000 1,674 
2 3,167 6,334 9,062 1,354 0.000 

4 I 12,689 20,270 38,067 0.000 11,371 
2 7,210 11,567 21,631 9,664 0.000 

Goal Programming Semi-full Costing 
The semi-full costs of the production and service departments are, 

* * SFP * = DP * + UP* 

SFs: = DS* + us: , 

where, 

UP!= UP*+ (su/w)WP*, 

us* = us* + (eu/w) ws* , 

eu = u - (UP. + US.) , 

w = WP. + WS,, 

WP* =UP*- UP*' 

ws* = us* - us* . 

sums 

78,921 
84,376 

63,112 
60,665 

47,838 
19,917 

82,397 
50,072 

The goals boundaries and weights, UP* , US* , and WP * , WS* . arranged in the format of 
Fig. 7, are displayed in Table 11. 
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Fig. 7: Goals boundaries and weights, format 

labels N M sums 

gls. bndrs UP* us* UP +US 
weights WP* ws* WP +WS 

TABLE 11 
Goals boundaries and weights. 

Labels 1 2 3 1 2 

gls. bndrs 31,888 38,370 59,335 16,483 8,242 
weights 19,409 13,454 24,988 13,287 24,544 

The goals boundaries in Table 11 are in the minima of the columns of table 
From Table 11 we find that, 

eu = 250,000 - 154,318, 
w = 95,682 

sums 

154,318 
95,682 

Finally, the semi-full costs for the three production and two service departments, SFP: 
and SFS! are as shown in Table 12. 

Labels 1 2 

semi-full cost 116,297 91,824 

Goal Programming Full Costs 

TABLE 12 
Semi-full costs. 

3 

129,323 

1 

59,770 

Full costs of the production and service departments are, 

FP* = SFP* + SP* 
* * . * ' 

FS* = SFS* + SS* 
* * . * ' 

where, 

SP:* = SP ** - Diag (C*) WP ** , 

ss:* = SS** + WS** Diag (C*)- Diag (C*) WS** , 
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42,786 440,000 



WP ** SP ** - SP ** 

ws** = ss** - ss** , 

c* = (Ws** + ws~*- Diag (ws*. + ws.* + WP *.))-
1 

• (sFs* + ss.*- ss*.- sP *·) 

From Table 10, the goals boundaries and weights, SP ** SS** , and WP ** , WS** , ar­
ranged in the format of Fig, 8, are obtained and are presented in Table 13. 

Fig. 8 : Goals boundaries and weights, format 

labels N M sums 

K SP** ss** sP * + ss*. 
K WP** ws** WP*. + ws*. 

TABLE 13 
Goals boundaries and weights. 

Labels 1 2 3 1 2 sums 

I 7,893 10,792 16,725 0.000 1,674 37,084 
2 3,167 6,334 9,062 11,354 0.000 19,917 

1 7,715 4,657 9,314 0.000 9,297 30,983 
2 10,874 5,331 10,693 6,942 0.000 33,839 

The vectors entering in the definition of C* and C* itself, are shown in Table 14. 

TABLE 14 
C *and its defining vectors. 

ws 
*' 

ws.* WP*. ss.* ss*. SP*. c* 

9,297 6,942 21,686 1,354 1,674 35,410 -1.04613 
h.942 9.297 26,898 1,674 1,354 18,563 -0.96277 

The struckured overhead matrices and full costs of the production and service depart­
ments, SP** , ss!*, and FP!, FS!, arranged in the format of Fig. 9, are shown in Table 
15. 
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Labels 

M 

Full cost 

Fig. 9: Structured overhead and full costs 
allocations, format 

N M 

* * SP** ss** 

* * FP* FS* 

TABLE 15 
Structured overhead and full costs allocations. 

Labels 1 2 3 1 2 

1 15,964 15,664 26,469 0.000 2,449 
2 13,636 11,467 19,357 775 0.000 

full cost 145,897 118,955 175,149 60,545 45,235 

sums 

* * sP*· + ss*. 

FP: + FS! 

sums 

60,546 
45,235 

545,781 
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