• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling, simulation and control of a scheibel liquid–liquid contactor: Part 1. Dynamic analysis and system identification

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2004-05-26
    Author
    Mjalli, Farouq
    Abdel-Jabbar, Nabil
    Fletcher, John
    Metadata
    Show full item record
    Abstract
    The liquid–liquid extraction process is well-known for its complexity and often entails intensive modeling and computational efforts to simulate its dynamic behaviour. However, rigorous mathematical models are usually impractical or are of limited usefulness for control system design. Therefore, there is a need to derive simpler models for this process. Reduced-order linear models can be derived through applying system identification on the input–output simulation data. As a first step, a rigorous model for dynamic simulation of an extraction process is developed. This model employs an improved detailed stage-wise mixing stage with backmixing and it takes into account the variation in hydrodynamics, mass transfer, and physical properties throughout the length of the extraction column. It also approximates end effects by incorporating two mixing stages at both ends in addition to calculation of mass transfer within calming zones through the use of a mass transfer weight factor. The model is validated with dynamic experimental data for a nine stage Scheibel extraction column of type I. The simulation model is shown to be accurate for prediction of process behaviour under different operating conditions. Dynamic analysis of the process is conducted on the developed rigorous simulation model. Then, system identification is applied to derive linear time-invariant reduced-order models, which relate the input process variables (agitator speed, solvent feed flowrate and concentration, feed concentration and flowrate) to the output process variables (raffinate concentration and extract concentration). The identified model predictions are found to be in a good agreement with the rigorous ones.
    DOI/handle
    http://dx.doi.org/10.1016/j.cep.2004.05.016
    http://hdl.handle.net/10576/10633
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video