Automated Segmentation of Cerebral Aneurysm Using a Novel Statistical Multiresolution Approach
Abstract
Cerebral Aneurysm (CA) is a vascular disease that threatens the lives of
many adults. It a ects almost 1:5 - 5% of the general population. Sub-
Arachnoid Hemorrhage (SAH), resulted by a ruptured CA, has high rates of
morbidity and mortality. Therefore, radiologists aim to detect it and diagnose
it at an early stage, by analyzing the medical images, to prevent or reduce its
damages.
The analysis process is traditionally done manually. However, with the
emerging of the technology, Computer-Aided Diagnosis (CAD) algorithms are
adopted in the clinics to overcome the traditional process disadvantages, as
the dependency of the radiologist's experience, the inter and intra observation
variability, the increase in the probability of error which increases consequently
with the growing number of medical images to be analyzed, and the artifacts
added by the medical images' acquisition methods (i.e., MRA, CTA, PET, RA,
etc.) which impedes the radiologist' s work.
Due to the aforementioned reasons, many research works propose di erent
segmentation approaches to automate the analysis process of detecting a CA
using complementary segmentation techniques; but due to the challenging task
of developing a robust reproducible reliable algorithm to detect CA regardless
of its shape, size, and location from a variety of the acquisition methods, a
diversity of proposed and developed approaches exist which still su er from
some limitations.
This thesis aims to contribute in this research area by adopting two promising
techniques based on the multiresolution and statistical approaches in the
Two-Dimensional (2D) domain. The rst technique is the Contourlet Transform
(CT), which empowers the segmentation by extracting features not apparent
in the normal image scale. While the second technique is the Hidden
Markov Random Field model with Expectation Maximization (HMRF-EM),
which segments the image based on the relationship of the neighboring pixels
in the contourlet domain.
The developed algorithm reveals promising results on the four tested Three-
Dimensional Rotational Angiography (3D RA) datasets, where an objective
and a subjective evaluation are carried out. For the objective evaluation, six
performance metrics are adopted which are: accuracy, Dice Similarity Index
(DSI), False Positive Ratio (FPR), False Negative Ratio (FNR), speci city,
and sensitivity. As for the subjective evaluation, one expert and four observers
with some medical background are involved to assess the segmentation visually.
Both evaluations compare the segmented volumes against the ground
truth data.
DOI/handle
http://hdl.handle.net/10576/11228Collections
- Computing [100 items ]