• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulation of wellbore construction in offshore unconsolidated methane hydrate-bearing formation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    SasakiT.
    SogaK.
    ElshafieM.Z.E.B.
    Metadata
    Show full item record
    Abstract
    The unconsolidated nature of offshore methane hydrate-bearing formation poses challenges to sustainable methane gas production as the weak formation is susceptible to disturbance during wellbore construction. This could contribute to loss of well integrity which could manifest as sand production and error in the interpretation of downhole tests such as mini-frac tests. In this study, a simulation methodology of wellbore construction process is proposed. A finite element model adopting this methodology is developed in order to assess the effect of wellbore construction process on the integrity of the unconsolidated methane hydrate-bearing formation in the Nankai Trough, Japan. The main objectives are (i) to develop a modelling methodology of well construction process for numerical simulations, (ii) to assess the zone and magnitude of well construction-induced stress/strain disturbance in the formation and (iii) to evaluate relative impact of each well construction stage on the integrity of the formation. The results from this study show that the zone of horizontal stress disturbance from the geostatic state due to wellbore construction could extend to more than three times the radius of the wellbore. Following the wellbore construction, the deviator stress is concentrated in the hydrate reservoir sublayers with high hydrate saturation while plastic deviatoric strain has accumulated in the sublayers with low hydrate saturation. The results also show that modelling of cement shrinkage process is crucial in predicting the concentration of deviator stress in the high hydrate saturation layers.
    DOI/handle
    http://dx.doi.org/10.1016/j.jngse.2018.10.019
    http://hdl.handle.net/10576/12040
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video