• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Size-selected fabrication of alloy nanoclusters by plasma-gas condensation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Ayesh A.I.
    Metadata
    Show full item record
    Abstract
    This work reports on the production of alloy Ti-Cu nanoclusters by magnetron sputtering and plasma-gas condensation inside an ultra-high compatible system. Inert-gas was introduced inside a source chamber to generate plasma, sputter material from its target, and establish plasma-gas condensation. The nanocluster size and yield were controlled by adjusting the nanocluster source conditions: inert-gas flow rate fAr, aggregation length L, and sputtering discharge power P. Nanoclusters were produced by three-body collision that created nanocluster embryo, and grew further by two-body collision. The dependence of nanocluster size on nanocluster source conditions was modeled using a homogeneous nucleation model where a nanocluster grows from embryo by nanocluster-nanocluster collision and vapor condensation. Controlled oxidation of ionized nanocluster was conducted in-situ which was found to affect nanocluster charge but retain its size. The nanoclusters were deposited on SiO2/Si substrates with pre-formed metal electrodes to produce percolating nanocluster devices. Those devices have useful applications in many fields such as photoelectrochemical diodes for production of hydrogen fuel. 2018 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.jallcom.2018.02.219
    http://hdl.handle.net/10576/12067
    Collections
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video