QoE-Aware Resource Allocation For Crowdsourced Live Streaming: A Machine Learning Approach
Abstract
In the last decade, empowered by the technological advancements of mobile devices
and the revolution of wireless mobile network access, the world has witnessed an
explosion in crowdsourced live streaming. Ensuring a stable high-quality playback
experience is compulsory to maximize the viewers’ Quality of Experience and the
content providers’ profits. This can be achieved by advocating a geo-distributed cloud
infrastructure to allocate the multimedia resources as close as possible to viewers, in
order to minimize the access delay and video stalls.
Additionally, because of the instability of network condition and the heterogeneity of
the end-users capabilities, transcoding the original video into multiple bitrates is
required. Video transcoding is a computationally expensive process, where generally a
single cloud instance needs to be reserved to produce one single video bitrate
representation. On demand renting of resources or inadequate resources reservation
may cause delay of the video playback or serving the viewers with a lower quality. On
the other hand, if resources provisioning is much higher than the required, the
extra resources will be wasted.
In this thesis, we introduce a prediction-driven resource allocation framework, to
maximize the QoE of viewers and minimize the resources allocation cost. First, by
exploiting the viewers’ locations available in our unique dataset, we implement a machine learning model to predict the viewers’ number near each geo-distributed cloud
site. Second, based on the predicted results that showed to be close to the actual values,
we formulate an optimization problem to proactively allocate resources at the viewers’
proximity. Additionally, we will present a trade-off between the video access delay and
the cost of resource allocation.
Considering the complexity and infeasibility of our offline optimization to respond to
the volume of viewing requests in real-time, we further extend our work, by introducing
a resources forecasting and reservation framework for geo-distributed cloud sites. First,
we formulate an offline optimization problem to allocate transcoding resources at the
viewers’ proximity, while creating a tradeoff between the network cost and viewers
QoE. Second, based on the optimizer resource allocation decisions on historical live
videos, we create our time series datasets containing historical records of the optimal
resources needed at each geo-distributed cloud site. Finally, we adopt machine learning
to build our distributed time series forecasting models to proactively forecast the exact
needed transcoding resources ahead of time at each geo-distributed cloud site.
The results showed that the predicted number of transcoding resources needed in each
cloud site is close to the optimal number of transcoding resources.
DOI/handle
http://hdl.handle.net/10576/12349Collections
- Computing [100 items ]