Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems
Abstract
Globally, the buildings sector accounts for 30% of the energy consumption and
more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and
Air Conditioning (HVAC) system is the most extensively operated component and it is
responsible alone for 40% of the final building energy usage. HVAC systems are used
to provide healthy and comfortable indoor conditions, and their main objective is to
maintain the thermal comfort of occupants with minimum energy usage.
HVAC systems include a considerable number of sensors, controlled actuators, and
other components. They are at risk of malfunctioning or failure resulting in reduced efficiency,
potential interference with the execution of supervision schemes, and equipment
deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve
their reliability, efficiency, and performance, and to provide preventive maintenance.
In this thesis work, two neural network-based methods are proposed for sensor and
actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised
sensor data validation and fault diagnosis method using an Auto-Associative Neural
Network (AANN) is developed. The method is based on the implementation of Nonlinear
Principal Component Analysis (NPCA) using a Back-Propagation Neural Network
(BPNN) and it demonstrates notable capability in sensor fault and inaccuracy
correction, measurement noise reduction, missing sensor data replacement, and in both
single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks
(CNNs) is developed for single actuator faults. It is based a data transformation in
which the 1-dimensional data are configured into a 2-dimensional representation without
the use of advanced signal processing techniques. The CNN-based actuator fault
diagnosis approach demonstrates improved performance capability compared with the
commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and
standard Neural Networks).
The presented schemes are compared with other commonly used HVAC fault diagnosis
methods for benchmarking and they are proven to be superior, effective, accurate,
and reliable. The proposed approaches can be applied to large-scale buildings with
additional zones.
DOI/handle
http://hdl.handle.net/10576/12356Collections
- Electrical Engineering [53 items ]