• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A clustering-based repair shop design for repairable spare part supply systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Turan H.H.
    Sleptchenko A.
    Pokharel S.
    ElMekkawy T.Y.
    Metadata
    Show full item record
    Abstract
    In this study, we address the design problem of a single repair shop in a repairable multi-item spare part supply system. We propose a sequential solution heuristic to solve the joint problem of resource pooling, inventory allocation, and capacity level designation of the repair shop with stochastic failure and repair time of repairables. The pooling strategies to obtain repair shop clusters/cells are handled by a K-median algorithm by taking into account the repair time and the holding cost of each repairable spare part. We find that the decomposition of the repair shop in sub-systems by clustering reduces the complexity of the problem and enables the use of queue-theoretical approximations to optimize the inventory and capacity levels. The effectiveness of the proposed approach is analyzed with several numerical experiments. The repair shop designs suggested by the approach provide around 10% and 30% cost reductions on an average when compared to fully flexible and totally dedicated designs, respectively. We also explore the impact of several input parameters and different clustering rules on the performance of the methodology and provide managerial insights.
    DOI/handle
    http://dx.doi.org/10.1016/j.cie.2018.08.032
    http://hdl.handle.net/10576/12979
    Collections
    • Mechanical & Industrial Engineering [‎1461‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video