• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Defect-based ArcGIS tool for prioritizing inspection of sewer pipelines

    Thumbnail
    Date
    2018
    Author
    Elmasry M.
    Zayed T.
    Hawari A.
    Metadata
    Show full item record
    Abstract
    This paper presents a defect-based model for assessing risk of failure for sewer pipelines. The proposed model deploys a Sugeno fuzzy inference system to create a risk index from which inspection and replacement activities may be prioritized. To determine the likelihood of failure, dynamic Bayesian network (DBN) was used as an inference engine to predict the likelihood of sewer pipeline failure based on both probable defects that could occur and some pipeline characteristics. The consequences of failure were determined using an economic loss model that assumed both costs resulting from the failure of sewer pipelines and benefits from avoiding such failures. An ArcGIS tool was created using the Python programming language to perform the Sugeno fuzzy inference method and determine the risk of failure by combining both the likelihood and consequences of failure. Actual data for inspected sewer pipelines in Doha, Qatar, were used to validate the tool; in the validation, the pipelines from the model were compared with the inspected pipelines. It was found that, if deployed, the proposed tool could save more than 77% over the current inspection practices followed by municipalities. It is expected that the resulting risk map would help key personnel in municipalities to identify sewer pipelines that require immediate interventions and would assist in better planning for inspection programs, especially in cases of limited funds.
    DOI/handle
    http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000342
    http://hdl.handle.net/10576/12982
    Collections
    • Civil and Environmental Engineering [‎862‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video