Show simple item record

AuthorSundarabharathi L.
AuthorParangusan H.
AuthorPonnamma D.
AuthorAl-Maadeed M.A.A.
AuthorChinnaswamy M.
Available date2020-03-18T08:10:08Z
Publication Date2018
Publication NameJournal of Biomedical Materials Research - Part B Applied Biomaterials
ResourceScopus
ISSN15524973
URIhttp://dx.doi.org/10.1002/jbm.b.34023
URIhttp://hdl.handle.net/10576/13323
AbstractIn the present investigation, we have successfully synthesized luminescent Eu3+-doped and Eu3+/Sr2+ codoped hydroxyapatite (HA) nanoparticles through sol-gel assisted precipitation method with the aim of developing novel biomaterials containing osteoblast mineral (Sr2+) and luminescence activator (Eu3+). The structure, morphology, thermal stability, and luminescence properties of the resultant spherical nanoparticles (50?100 nm diameters) were studied. Moreover, the in-vitro bioactivity of Eu0.1Sr0.1HA nanoparticles was investigated by immersing in the simulated body fluid for many weeks. The antimicrobial activity results against gram positive and gram negative bacterial stains, showed better resistivity for the Eu0.1Sr0.1HA among the other compositions. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay of live/dead cells cultured with Eu3+/Sr2+-doped HA nanoparticles retained its normal morphology and did not show a significant impact on cell proliferation at various incubation days, which evidence for the material's superior biocompatible nature even at a higher concentration of 375 ?g/mL. Thus, the incorporation of dual ions in HA nanoparticles with strong luminescence properties develops potential biomaterial for live cell imaging and in nanomedicine. ? 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2191?2201, 2018. ? 2017 Wiley Periodicals, Inc.
Languageen
PublisherJohn Wiley and Sons Inc.
Subjectantimicrobial
cell therapy
hydroxyapatite
nanomaterials/nanophase
surface modification
TitleIn-vitro biocompatibility, bioactivity and photoluminescence properties of Eu3+/Sr2+ dual-doped nano-hydroxyapatite for biomedical applications
TypeArticle
Pagination2191 - 2201
Issue Number6
Volume Number106
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record