• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of garch model to forecast data and volatility of share price of energy (Study on adaro energy Tbk, LQ45)

    Thumbnail
    Date
    2018
    Author
    Virginia E.
    Ginting J.
    Elfaki F.A.M.
    Metadata
    Show full item record
    Abstract
    Most of the times, Economic and Financial data not only become highly volatile but also show heterogeneous variances (heteroscedasticity). The common method of the Box Jenkins cannot be used for data modeling as the method has an effect of heteroscedasticity (autoregressive conditional heteroscedastic ARCH effects). One of the usable methods to overcome the effect of heteroscedasticity is GARCH model. The aim of this study is to find the best model to estimate the parameters, to predict the share price, and to forecast the volatility of data share price of Adaro energy Tbk, Indonesia, from January 2014 to December 2016. The study also discuss the Window Dressing. The best model which fits the data is identified as AR(1)-GARCH (1,1). The application of this best model for forecasting the share price of Adaro energy Tbk, Indonesia, for the next 30 days showed very promising results and the mean absolute percentage error was determined as 2.16%.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046750484&partnerID=40&md5=6b3fb8ac97dd13b48e16d605dd9dc687
    DOI/handle
    http://hdl.handle.net/10576/13539
    Collections
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video