• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-moth flame optimization for solving the link prediction problem in complex networks

    Thumbnail
    Date
    2019
    Author
    Barham R.
    Sharieh A.
    Sleit A.
    Metadata
    Show full item record
    Abstract
    Providing a solution for the link prediction problem attracts several computer science fields and becomes a popular challenge in researches. This challenge is presented by introducing several approaches keen to provide the most precise prediction quality within a short period of time. The difficulty of the link prediction problem comes from the sparse nature of most complex networks such as social networks. This paper presents a parallel metaheuristic framework which is based on moth-flame optimization (MFO), clustering and pre-processed datasets to solve the link prediction problem. This framework is implemented and tested on a high-performance computing cluster and carried out on large and complex networks from different fields such as social, citation, biological, and information and publication networks. This framework is called Parallel MFO for Link Prediction (PMFO-LP). PMFO-LP is composed of data preprocessing stage and prediction stage. Dataset division with stratified sampling, feature extraction, data under-sampling, and feature selection are performed in the data preprocessing stage. In the prediction stage, the MFO based on clustering is used as the prediction optimizer. The PMFO-LP provides a solution to the link prediction problem with more accurate prediction results within a reasonable amount of time. Experimental results show that PMFO-LP algorithm outperforms other well-regarded algorithms in terms of error rate, the area under curve and speedup. Note that the source code of the PMFO-LP algorithm is available at https://github.com/RehamBarham/PMFO_MPI.cpp. - 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
    DOI/handle
    http://dx.doi.org/10.1007/s12065-019-00257-y
    http://hdl.handle.net/10576/13637
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video