• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Galvanic exchange as a novel method for carbon nitride supported coag catalyst synthesis for oxygen reduction and carbon dioxide conversion

    Thumbnail
    View/Open
    catalysts-09-00860.pdf (6.584Mb)
    Date
    2019
    Author
    Nazir, Roshan
    Kumar, Anand
    Ali, Sardar
    Saad, Mohammed A.
    Al-Marri, Mohammed J.
    Metadata
    Show full item record
    Abstract
    A bimetallic alloy of CoAg nanoparticles (NPs) on a carbon nitride (CN) surface was synthesized using a galvanic exchange process for the oxygen reduction reaction (ORR) and carbon dioxide electrocatalytic conversion. The reduction potential of cobalt is ([Co2+(aq) + 2e? ? Co(s)], ?0.28 eV) is smaller than that of Ag ([Ag+(aq) + e? ? Ag(s)], 0.80 eV), which makes Co(0) to be easily replaceable by Ag+ ions. Initially, Co NPs (nanoparticles) were synthesized on a CN surface via adsorbing the Co2+ precursor on the surface of CN and subsequently reducing them with NaBH4 to obtain Co/CN NP. The Co NPs on the surface of CN were then subjected to galvanic exchange, where the sacrificial Co atoms were replaced by Ag atoms. As the process takes place on a solid surface, only the partial replacement of Co by Ag was possible generating CoAg/CN NPs. Synthesized CoAg/CN bimetallic alloy were characterized using different techniques such as powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and electron diffraction spectroscopy (EDS) to confirm the product. Both the catalysts, Co/CN and CoAg/CN, were evaluated for oxygen reduction reaction in 1M KOH solution and carbon dioxide conversion in 0.5 M KHCO3. In the case of ORR, the CoAg/CN was found to be an efficient electrocatalyst with the onset potential of 0.93 V, which is comparable to commercially available Pt/C having Eonset at 0.91 V. In the electrocatalytic conversion of CO2, the CoAg/CN showed better performance than Co/CN. The cathodic current decreased dramatically below ?0.9V versus Ag/AgCl indicating the high conversion of CO2. - 2019 by the authors. Licensee MDPI, Basel, Switzerland.
    DOI/handle
    http://dx.doi.org/10.3390/catal9100860
    http://hdl.handle.net/10576/13919
    Collections
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video