• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault detection and severity identification of ball bearings by online condition monitoring

    Thumbnail
    Date
    2019
    Author
    Abdeljaber O.
    Sassi S.
    Avci O.
    Kiranyaz S.
    Ibrahim A.A.
    Gabbouj M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper presents a fast, accurate, and simple systematic approach for online condition monitoring and severity identification of ball bearings. This approach utilizes compact one-dimensional (1-D) convolutional neural networks (CNNs) to identify, quantify, and localize bearing damage. The proposed approach is verified experimentally under several single and multiple damage scenarios. The experimental results demonstrated that the proposed approach can achieve a high level of accuracy for damage detection, localization, and quantification. Besides its real-time processing ability and superior robustness against the high-level noise presence, the compact and minimally trained 1-D CNNs in the core of the proposed approach can handle new damage scenarios with utmost accuracy. - 1982-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/TIE.2018.2886789
    http://hdl.handle.net/10576/13951
    Collections
    • Civil and Environmental Engineering [‎863‎ items ]
    • Electrical Engineering [‎2822‎ items ]
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video