Show simple item record

AuthorEid K.
AuthorSliem M.H.
AuthorAl-Kandari H.
AuthorSharaf M.A.
AuthorAbdullah A.M.
Available date2020-04-16T06:56:47Z
Publication Date2019
Publication NameLangmuir
ResourceScopus
ISSN7437463
URIhttp://dx.doi.org/10.1021/acs.langmuir.8b03588
URIhttp://hdl.handle.net/10576/14234
AbstractThe precise fabrication of efficient catalysts for CO oxidation is of particular interest in a wide range of industrial and environmental applications. Herein, a scalable method is presented for the controlled synthesis of graphitic-like porous carbon nitride nanotubes (gC 3 N 4 NTs) codoped with Au and Pd (Au/Pd/gC 3 N 4 NTs) as efficient catalysts for carbon monoxide (CO) conversion. This includes the activation of melamine with nitric acid in the presence of ethylene glycol and metal precursors followed by consecutive polymerization and carbonization. This drives the formation of porous one-dimensional gC 3 N 4 NT with an outstanding surface area of (320.6 m 2 g -1 ) and an atomic-level distribution of Au and Pd. Intriguingly, the CO conversion efficiency of Au/Pd/gC 3 N 4 NTs was substantially greater than that for gC 3 N 4 NTs. The approach thus presented may provide new avenues for the utilization of gC 3 N 4 doped with multiple metal-based catalysts for CO conversion reactions which had been rarely reported before.
Languageen
PublisherAmerican Chemical Society
SubjectRational Synthesis
Porous Graphitic-like Carbon Nitride Nanotubes Codoped
Au
Pd
TitleRational Synthesis of Porous Graphitic-like Carbon Nitride Nanotubes Codoped with Au and Pd as an Efficient Catalyst for Carbon Monoxide Oxidation
TypeArticle
Pagination3421-3431
Issue Number9
Volume Number35
dc.accessType Abstract Only


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record