• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Building energy model calibration using automated optimization-based algorithm

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Asadi S.
    Mostavi E.
    Boussaa D.
    Indaganti M.
    Metadata
    Show full item record
    Abstract
    Multiple numbers of Building Energy Simulation (BES) programs have been improved and implemented during the last decades. BES models play a crucial role in understanding building energy demands and accelerating the malfunction diagnosis. However, due to the very high number of interacting parameters, most of the developed energy simulation programs do not accurately predict building energy performance under a known condition. Even the energy models which are developed with the very precise assignment of parameters, there is always significant discrepancies between the simulation results and the real-time data measurements. Current study develops an optimization-based framework to calibrate the whole building energy model. The optimization algorithm attempts to set the identified parameters to minimize the error between the simulation results and the real-time measurements. Due to the high number of parameters, the developed optimization algorithm utilizes a Harmony Search algorithm as its search engine coupled with the energy simulation model to accelerate the calibration process. Moreover, to illustrate the efficiency of using the developed framework, a case study of the office building is modeled and calibrated and the statistical analysis was conducted to assess the accuracy of the results. The results of the calibration process show the reliability of the framework. - 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.enbuild.2019.06.001
    http://hdl.handle.net/10576/14347
    Collections
    • Architecture & Urban Planning [‎308‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video