• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Eco-friendly Concrete Using Local Materials From Sudan

    Thumbnail
    View/Open
    CIC2020_ Artcile111.pdf (3.071Mb)
    Date
    2020
    Author
    Mahmoud, Salma Yahia Mohamed
    Alshiekh, El Tahir Abualgasim Mohammed
    Metadata
    Show full item record
    Abstract
    This study is aimed at investigating the potentiality for utilizing some locally available eco-friendly materials to replace some concrete constituents as a possible opportunity to introduce sustainable construction in Sudan. Six suggested scenarios were explored to visualize the possible outcomes : (1) 100% recycled aggregates (RA) and natural pozzolana in replacement of coarse aggregates (2) steel slag replacing fine aggregate or cement (3) treated sawdust replacing fine aggregates (4) sawdust ash in partial replacement of cement (5) meta-kaolin (MK) in partial substitution for ordinary Portland cement (OPC) (6) quarry dust (QD) in partial replacement of sand or cement. Laboratory experiments were conducted and concrete workability and compressive strength were determined. The results confirmed the suitability of RA for full replacement of natural coarse aggregates. Steel slag was more appropriate in replacing sand than cement when added in small percentages not exceeding 15%. Sawdust needed treatment to eliminate the unfavorable properties before using it as a substitute for sand but when the ash was used to replace cement, it was not possible to achieve the required strength at early ages and better results were achieved in 28 days. With a chemical composition comparable to cement, MK showed impressive results when used in partial replacement of OPC. The addition of QD in replacement of 15% of sand offered a reasonable workability but the compressive strength was only approaching the targeted value. According to these results, it could be inferred that the tested options offer reasonable evidence to confirm their potentiality for producing green concrete in Sudan.
    URI
    http://www.cic.qa
    DOI/handle
    http://dx.doi.org/10.29117/cic.2020.0118
    http://hdl.handle.net/10576/14704
    Collections
    • Theme 4: Sustainability, Renovation, and Monitoring of Civil Infrastructure [‎36‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video