• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Architecture & Urban Planning
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strength, shrinkage, and permeability performance of seawater concrete

    Thumbnail
    Date
    2019
    Author
    Younis, Adel
    Ebead, Usama
    Suraneni, Prannoy
    Nanni, Antonio
    Metadata
    Show full item record
    Abstract
    Given the increasing global concern of freshwater scarcity, the use of seawater in concrete mixtures appears to be a way forward towards achieving sustainable concrete, especially in the case of non-reinforced concrete applications or with the use of noncorrosive reinforcement. This paper reports on the results of an experimental study to compare the freshwater- and seawater-mixed concretes in terms of their strength, shrinkage and permeability performance. The experimental program included the following: (i) compressive strength test (at 3, 7, 28, and 56-day ages); (ii) concrete shrinkage test (at Days 4, 7, 14, 21, 28, and 56 following mixing); and (iii) permeability tests (rapid chloride permeability and water absorption at Days 28 and 56 following mixing). As for the study results, seawater concrete showed a slightly higher early-age (i.e., till Day 7) strength performance than that of freshwater-mixed counterpart, followed by a strength performance that is 7 10% inferior to the freshwater concrete after 28 days or later. Also, the shrinkage of seawater concrete was slightly higher than that of freshwater concrete, with a difference of 5% reported after 56 days following mixing. Finally, the permeability performance of hardened concrete in seawater and freshwater mixtures was similar.
    DOI/handle
    http://hdl.handle.net/10576/15489
    Collections
    • Architecture & Urban Planning [‎308‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video