Mathematics anxiety and cognition: An integrated neural network model
المؤلف | Moustafa, Ahmed A. |
المؤلف | Porter, Angela |
المؤلف | Megreya, Ahmed M. |
تاريخ الإتاحة | 2020-08-18T08:34:15Z |
تاريخ النشر | 2019 |
اسم المنشور | Reviews in the Neurosciences |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 3341763 |
الملخص | Many students suffer from anxiety when performing numerical calculations. Mathematics anxiety is a condition that has a negative effect on educational outcomes and future employment prospects. While there are a multitude of behavioral studies on mathematics anxiety, its underlying cognitive and neural mechanism remain unclear. This article provides a systematic review of cognitive studies that investigated mathematics anxiety. As there are no prior neural network models of mathematics anxiety, this article discusses how previous neural network models of mathematical cognition could be adapted to simulate the neural and behavioral studies of mathematics anxiety. In other words, here we provide a novel integrative network theory on the links between mathematics anxiety, cognition, and brain substrates. This theoretical framework may explain the impact of mathematics anxiety on a range of cognitive and neuropsychological tests. Therefore, it could improve our understanding of the cognitive and neurological mechanisms underlying mathematics anxiety and also has important applications. Indeed, a better understanding of mathematics anxiety could inform more effective therapeutic techniques that in turn could lead to significant improvements in educational outcomes. -2019 Walter de Gruyter GmbH, Berlin/Boston 2019. |
اللغة | en |
الناشر | De Gruyter |
الموضوع | amygdala cognition distraction inhibition mathematics anxiety neural networks prefrontal cortex |
النوع | Article |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
العلوم النفسية [123 items ]