• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Copyrights
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic Concept Extraction Based on Semantic Graphs From Big Data in Smart City

    Thumbnail
    Date
    2019
    Author
    Qiu, Jing
    Chai, Yuhan
    Tian, Zhihong
    Du, Xiaojiang
    Guizani, Mohsen
    Metadata
    Show full item record
    Abstract
    With the rapid development of smart cities, various types of sensors can rapidly collect a large amount of data, and it becomes increasingly important to discover effective knowledge and process information from massive amounts of data. Currently, in the field of knowledge engineering, knowledge graphs, especially domain knowledge graphs, play important roles and become the infrastructure of Internet knowledge-driven intelligent applications. Domain concept extraction is critical to the construction of domain knowledge graphs. Although there have been some works that have extracted concepts, semantic information has not been fully used. However, the excellent concept extraction results can be obtained by making full use of semantic information. In this article, a novel concept extraction method, Semantic Graph-Based Concept Extraction (SGCCE), is proposed. First, the similarities between terms are calculated using the word co-occurrence, the LDA topic model and Word2Vec. Then, a semantic graph of terms is constructed based on the similarities between the terms. Finally, according to the semantic graph of the terms, community detection algorithms are used to divide the terms into different communities where each community acts as a concept. In the experiments, we compare the concept extraction results that are obtained by different community detection algorithms to analyze the different semantic graphs. The experimental results show the effectiveness of our proposed method. This method can effectively use semantic information, and the results of the concept extraction are better from domain big data in smart cities. IEEE
    DOI/handle
    http://dx.doi.org/10.1109/TCSS.2019.2946181
    http://hdl.handle.net/10576/15572
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video