عرض بسيط للتسجيلة

المؤلفArifuzzaman, Md
المؤلفGazder, Uneb
المؤلفIslam, Muhammad Saiful
المؤلفAl Mamun, Abdullah
تاريخ الإتاحة2020-08-18T08:34:44Z
تاريخ النشر2019
اسم المنشورJournal of Adhesion Science and Technology
المصدرScopus
الرقم المعياري الدولي للكتاب1694243
معرّف المصادر الموحدhttp://dx.doi.org/10.1080/01694243.2019.1698201
معرّف المصادر الموحدhttp://hdl.handle.net/10576/15644
الملخصThe expected longer service life of modified asphalt can be jeopardized by different environmental factors, such as moisture, oxidation, etc. which affect the desired properties by altering the adhesive property. An insight into knowledge of the adhesive property of the asphalt can help in providing more durable asphalt pavement. The study attempted to develop different models of adhesive properties of polymers and carbon nanotubes (CNTs) modified asphalt binders. The polymer-CNT modified asphalt is processed to prepare different types of samples, by simulating the damage due to moisture and oxidization, following the corresponding standard method. An Atomic Force Microscopy (AFM) was employed to assess the nanoscale adhesion force of the tested samples following the existing functional group in asphalt. Finally, the study has developed Radial Basis Function Neural Network (RBFNN) as a function of different parameters including; asphalt chemistry (i.e. AFM tip type and constant), type and percentages of polymers and CNTs and different environmental exposures (oxidation, moisture, etc.) to predict the nano adhesion force of asphalt. It is observed that the adhesive property of the Styrene�Butadiene modified asphalt is more consistent compared to the Styrene�Butadiene�Styrene modified asphalt, while the presence of Single-Wall Nanotubes (SWNT) is observed to affect the adhesive properties of asphalt significantly as compared to Multi-Wall Nanotubes (MWNT). The higher accuracy level of RBFNN model also indicates that the functional group (tip-type) adding with the percentages and types of polymers and CNTs significantly affect the adhesive properties of asphalt. - 2019, - 2019 Informa UK Limited, trading as Taylor & Francis Group.
اللغةen
الناشرTaylor and Francis Ltd.
الموضوعadhesion
Asphalt
atomic force microscopy
carbon nanotubes
radial basis function neural network
العنوانPrediction and sensitivity analysis of CNTs-modified asphalt's adhesion force using a radial basis neural network model
النوعArticle
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة