• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S1386947720311565-main (1).pdf (817.3Kb)
    Date
    2021-01-31
    Author
    Ehab, Salih
    Ayesh, Ahmad I.
    Metadata
    Show full item record
    Abstract
    In this work, four armchair graphene nanoribbon (AGNR) based sensor materials were built using Atomistic ToolKit Virtual NanoLab (ATK-VNL) and utilized to detect carbon monoxide (CO) and carbon dioxide (CO2) gases. First, the effect of passivating AGNR on the sensing performance toward CO and CO2 gases has been investigated, where AGNR was passivated with hydrogen (H-AGNR) and nitrogen (N-AGNR). The obtained results reflected no significant changes in the adsorption parameters of CO and CO2 molecules on H-AGNR and N-AGNR. Particularly, the adsorption energies between H-AGNR and N-AGNR systems and CO were found to be −0.446 and −0.436 eV, while for the case of CO2, the adsorption energies were found to be −0.426 and −0.432 eV, respectively. To enhance the sensing performance, both H-AGNR and N-AGNR systems were doped with platinum (Pt) forming another two systems: Pt–H-AGNR, and Pt–N-AGNR. After doping, the results revealed a significant increase in the adsorption energy to almost 9 times than the non-doped systems for the cases of CO on Pt–N-AGNR as well as CO2 on both Pt–H-AGNR and Pt–N-AGNR. Moreover, an increase of almost 13 times was observed in the adsorption energy for the case of CO on Pt–H-AGNR. Besides to the adsorption energy (Eads), the adsorption distance ((D), charge transfer (ΔQ), the density of states (DOS), as well as the band structure have been examined to confirm the adsorption of CO and CO2 on the four systems.
    URI
    https://www.sciencedirect.com/science/article/pii/S1386947720311565
    DOI/handle
    http://dx.doi.org/10.1016/j.physe.2020.114418
    http://hdl.handle.net/10576/16219
    Collections
    • Center for Sustainable Development Research [‎341‎ items ]
    • Mathematics, Statistics & Physics [‎804‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video