• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Production of flexible nanocomposite membranes for x-ray detectors

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0169433220317153-main.pdf (1.914Mb)
    Date
    2020-10-30
    Author
    Ahmad I., Ayesh
    Salah, Belal
    Nawwas, Rama
    Alyafei, Aldana
    AlMansouri, Sara
    Al-Sulaiti, Leena
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Flexible membranes of poly(vinyl alcohol) (PVA) polymer and CuO nanoparticles for x-ray detection applications are reported in this work. PVA represents a polymer matrix for nanoparticles, and its flexibility and electrical conductivity are enhanced by addition of glycerol (GL) plasticizer. Nanoparticles of an average size of 6.3∓2.4nm are produced by a solvothermal method and added to the PVA + GL solution with different concentrations. The flexible membranes are fabricated by solution casting on glass substrates. The effect of blending of PVA + GL with nanoparticles on different characteristics of the membranes including the flexibility as well as the melting, glass transition, and degradation temperatures are tested by differential scanning calorimetry, thermal gravimetric analysis, as well as both Raman and Fourier-transform infrared spectroscopy. Electrical impedance tests reveal that both dc resistance and activation energy decrease with increasing temperature as well as nanoparticle concentration. The produced membranes reveal electrical response to x-ray due to the presence of CuO nanoparticles, and this response rises with x-ray generator voltage. The results presented in this study specify that the produced membranes are easy to produce with low cost, thus, they represent potential candidates for practical applications including x-ray detection.
    URI
    https://www.sciencedirect.com/science/article/pii/S0169433220317153
    DOI/handle
    http://dx.doi.org/10.1016/j.apsusc.2020.146958
    http://hdl.handle.net/10576/16222
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]
    • Chemical Engineering [‎1195‎ items ]
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video