• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Center for Sustainable Development
  • Center for Sustainable Development Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the Sensing Performance of Zigzag Graphene Nanoribbon to Detect NO, NO, and NH Gases.

    Thumbnail
    View/Open
    sensors-20-03932.pdf (1.048Mb)
    Date
    2020-07-01
    Author
    Salih, Ehab
    Ayesh, Ahmad I
    Metadata
    Show full item record
    Abstract
    In this article, a zigzag graphene nanoribbon (ZGNR)-based sensor was built utilizing the Atomistic ToolKit Virtual NanoLab (ATK-VNL), and used to detect nitric oxide (NO), nitrogen dioxide (NO), and ammonia (NH). The successful adsorption of these gases on the surface of the ZGNR was investigated using adsorption energy (E), adsorption distance (D), charge transfer (∆Q), density of states (DOS), and band structure. Among the three gases, the ZGNR showed the highest adsorption energy for NO with -0.273 eV, the smallest adsorption distance with 2.88 Å, and the highest charge transfer with -0.104 e. Moreover, the DOS results reflected a significant increase of the density at the Fermi level due to the improvement of ZGNR conductivity as a result of gas adsorption. The surface of ZGNR was then modified with an epoxy group (-O-) once, then with a hydroxyl group (-OH), and finally with both (-O-) and (-OH) groups in order to improve the adsorption capacity of ZGNR. The adsorption parameters of ZGNR were improved significantly after the modification. The highest adsorption energy was found for the case of ZGNR-O-OH-NO with -0.953 eV, while the highest charge transfer was found for the case of ZGNR-OH-NO with -0.146 e. Consequently, ZGNR-OH and ZGNR-O-OH can be considered as promising gas sensors for NO and NO, respectively.
    DOI/handle
    http://dx.doi.org/10.3390/s20143932
    http://hdl.handle.net/10576/16242
    Collections
    • Center for Sustainable Development Research [‎338‎ items ]
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video