• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 2: Population, Health & Wellness
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2020
  • Theme 2: Population, Health & Wellness
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Conjugation of CTGF with Reduced Graphene Oxide Nanoparticles for the development of wound healing hydrogel patch

    Thumbnail
    View/Open
    Conjugation of CTGF with Reduced Graphene Oxide Nanoparticles for the development of wound healing hydrogel patch.pdf (486.8Kb)
    Date
    2020
    Author
    Syed, Raza ur Rehman
    augustine, Robin
    Zahid, Alap ali
    Hasan, anwarul
    Metadata
    Show full item record
    Abstract
    Non-healing chronic wounds are the key concern in type-2 diabetes that frequently leads to chronic infections, finally causes amputation of limbs, organs etc. Decrease in the proliferation and migration of cells such as keratinocytes and fibroblasts is the major reason for the development of such chronic diabetic wounds. Multiple evidences have shown that CTGF and reduced graphene oxide possesses angiogenic property and promote wound healing by promoting proliferation and migration of fibroblasts and keratinocytes cells.Conjugation of rGO with CTGF using EDC-NHS chemistry is a novel approach to accelerate the wound healing process. In the current work, we have developed a rGO/CTGF incorporated GelMA hydrogel dressing to improve wound healing by increasing proliferation and migration of cells as well as promoting formation of new blood vessels for increased supply of nutrients, oxygen and growth factors to wound area
    URI
    https://doi.org/10.29117/quarfe.2020.0180
    DOI/handle
    http://hdl.handle.net/10576/16763
    Collections
    • Theme 2: Population, Health & Wellness [‎118‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video