• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Marine Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mangrove carbon stocks and biomass partitioning in an extreme environment

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0272771420306715-main.pdf (2.821Mb)
    Date
    2020-10-05
    Author
    Mark, Chatting
    LeVay, Lewis
    Walton, Mark
    Skov, Martin W.
    Kennedy, Hilary
    Wilson, Simon
    Al-Maslamani, Ibrahim
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Global inventories that show mangrove forests have rich carbon stores currently lack data from arid areas where carbon stocks may be functionally impoverished relative to humid regions. We quantified total carbon stocks (C) of three arid Avicennia marina stands in Qatar and report an aboveground biomass allometric equation and the first below ground biomass allometric equation in the region. The allometric relationships indicate that below ground mangrove C stocks in arid locations are more important than previously reported. Comparison of previously published and our locally developed allometric equations show that A. marina in Qatar allocate comparatively more biomass to below ground components than the same species in tropical humid settings, which is consistent with plant adaptations to living in stressed conditions. Total C stocks were 45.70 ± 3.70 Mg C ha−1, of which tree and soil C stocks to 50 cm depth represented 10.18 ± 0.82 Mg C ha−1 and 35.52 ± 2.88 Mg ha−1 respectively. Soil C stocks to 1 m depth were 50.17 ± 6.27 Mg C ha−1. Overall, mangroves sustain relatively small C stocks in the arid, hypersaline environment of Qatar, which may be due to both relatively low tree productivity and growth, as well as limited rainfall-driven transport of terrigenous sediment inputs. By providing further estimates of mangrove carbon at their climatic extremes, these results can contribute to a better quantification of global mangrove carbon, reduce uncertainty in below ground tree C estimates from arid mangroves and have implications for mangrove carbon stocks in the face of climate change.
    URI
    https://www.sciencedirect.com/science/article/pii/S0272771420306715
    DOI/handle
    http://dx.doi.org/10.1016/j.ecss.2020.106940
    http://hdl.handle.net/10576/16946
    Collections
    • Marine Science Cluster [‎215‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video